
ACuTE: Automatic Curriculum Transfer from
Simple to Complex Environments

Yash Shukla
Tufts University
Medford, USA

yash.shukla@tufts.edu

Christopher Thierauf
Tufts University
Medford, USA

christopher.thierauf@tufts.edu

Ramtin Hosseini
Tufts University
Medford, USA

ramtin.hosseini@tufts.edu

Gyan Tatiya
Tufts University
Medford, USA

gyan.tatiya@tufts.edu

Jivko Sinapov
Tufts University
Medford, USA

jivko.sinapov@tufts.edu

ABSTRACT
Despite recent advances in Reinforcement Learning (RL), many
problems, especially real-world tasks, remain prohibitively expen-
sive to learn. To address this issue, several lines of research have
explored how tasks, or data samples themselves, can be sequenced
into a curriculum to learn a problem that may otherwise be too
difficult to learn from scratch. However, generating and optimizing
a curriculum in a realistic scenario still requires extensive interac-
tions with the environment. To address this challenge, we formulate
the curriculum transfer problem, in which the schema of a curricu-
lum optimized in a simpler, easy-to-solve environment (e.g., a grid
world) is transferred to a complex, realistic scenario (e.g., a physics-
based robotics simulation or the real world). We present “ACuTE”,
Automatic Curriculum Transfer from Simple to Complex Environ-
ments, a novel framework to solve this problem, and evaluate our
proposed method by comparing it to other baseline approaches (e.g.,
domain adaptation) designed to speed up learning. We observe that
our approach produces improved jumpstart and time-to-threshold
performance even when adding task elements that further increase
the difficulty of the realistic scenario. Finally, we demonstrate that
our approach is independent of the learning algorithm used for
curriculum generation, and is Sim2Real transferable to a real world
scenario using a physical robot.

KEYWORDS
Curriculum Learning; Transfer Learning; Reinforcement Learning

ACM Reference Format:
Yash Shukla, Christopher Thierauf, Ramtin Hosseini, Gyan Tatiya, and Jivko
Sinapov. 2022. ACuTE: Automatic Curriculum Transfer from Simple to
Complex Environments. In Proc.of the 21st International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2022), Online, May 9–13,
2022, IFAAMAS, 9 pages.

1 INTRODUCTION
Curriculum Learning (CL) attempts to optimize the order in which
an agent accumulates experience, increasing performance while
reducing training time for complex tasks [8, 21, 22]. The core of

Proc.of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

CL is to generalize the experience and knowledge acquired in sim-
ple tasks and leverage it to learn complex tasks. Viable results are
achieved in simulation, where the system dynamics can be easily
modeled and the environment is predictable. One major limitation
of many curriculum learning approaches is that the time to generate
the curriculum is greater than the time to learn the target task from
scratch, which prohibits the use of such methods in complex, real-
world, high-fidelity domains [21]. The useful scenario of transfer to
the real world remains challenging: System identification, domain
adaptation, and domain randomization have performed Sim2Real
transfer by attempting to match simulation with the physical envi-
ronment (see Sim2Real Transfer), but these methods are elaborate
and time-consuming if the simulation dynamics are expensive.

Since the dynamics of high-fidelity (HF) environments may not
lend themselves to optimize a curriculum [35, 36], we propose learn-
ing the curriculum in a simplified version of the HF environment,
which we call the low-fidelity (LF) environment. Parameters from
each LF task can then be transferred, generating a corresponding
task in the HF environment. This curriculum transfer problem is an
open question (see [21]), and to our knowledge, our novel approach
is the first to address this problem. We refer to this as transferring
the schema of the curriculum: only task parameters are transferred
as to address situations where policies and value functions cannot
be directly transferred due to differences in the observation and
action spaces. High-level task descriptions can be used to model
inter-task relationships, and tasks with similar task-descriptors are
shown to aid positive transfer [25, 29]. We show that our curricu-
lum transfer approach leads to a quicker convergence even in cases
where the dynamics of the LF and HF environments are different
enough such that traditional domain adaptation methods do not
produce a sufficient boost in learning.

An overview of our approach is shown in Fig 1. We consider
a complex task and call it the HF target task, and map it to its
simplified LF representation. The simplified dynamics of the LF
environment allows curricula generation and experimentation to
avoid costly setup and expensive data collection associated with
the HF environment. Once an optimized curriculum is generated
in the LF environment, the task parameters are mapped to obtain
their respective HF counterparts. We learn these source tasks iter-
atively, transferring skills, before learning the target task. Finally,
we perform a demonstration with Sim2Real transfer from the HF
environment to test our effectiveness on a physical TurtleBot.

HF LF
Task Mapping

Target
Task

Source
Task 1

Transfer
Learning

Source
Task 2

Transfer
LearningSource

Task 3

Transfer
Learning

Transfer
Learning

…..

Low Fidelity Environment

Target
Task

Source
Task 1

Transfer
Learning

Source
Task 2

Transfer
LearningSource

Task 3

Transfer
Learning

Transfer
Learning

…..

High Fidelity Environment

LF HF
Task Mapping

LF HF
Task Mapping

LF HF
Task Mapping

Curriculum Generation Procedure

Physical Robot

Target
Task

Sim2Real Policy Transfer

ACuTE
Overview

Figure 1: Overview of the proposed curriculum transfer approach ACuTE. The curriculum is generated and optimized in the
low-fidelity environment, which is then mapped to generate a curriculum of the high-fidelity environment and learned before
learning the final target task. The policy is then transferred to a physical robot.

In this work, we perform extensive experimental evaluation to
demonstrate that curriculum transfer enables the agent to reduce
the overall target task time compared to baselines. Through ACuTE,
we propose an autonomous curriculum transfer method, which we
refer to as “Automated Curriculum Transfer”, that parameterizes
the target task to generate and optimize the sequence of source
tasks. We notice quick and efficient learning compared to baseline
approaches present in literature such as Domain Adaptation [3],
Self-Play [30] and Teacher-Student curriculum learning [18]. Addi-
tionally, we observe an improved jumpstart and time to threshold
performance even when we add elements that make the HF target
task too difficult to learn without a curriculum. We demonstrate
that our approach is independent of the learning algorithm by show-
ing improved performance in the HF environment when using a
different learning algorithm from the one used when optimizing
the curriculum, and also demonstrate positive transfer with imper-
fect mapping between the two environments. We observe that the
Sim2Real transfer achieves successful task completion performance,
equivalent to the HF agent’s performance, on a physical TurtleBot.

2 RELATEDWORK
Transfer Learning uses knowledge from learned tasks and trans-
fers it to a complex target task [31]. Policy transfer is one such
approach, in which the policy learned in a source task is used to
initialize the policy for the next task in the curriculum [6, 14, 20, 31].
One popular transfer learning technique is to transfer the value
function parameters learned in one task to initialize the value func-
tion of the next task in curriculum [1, 14–16].

Sim2Real Transfer allows a model to be trained in simulation
before deploying onto hardware, reducing time, cost, and safety
issues. However, it encounters what Tobin et. al. [32] describe as
the “Reality Gap” where a model does not allow an agent to train
on realistic details. The same authors introduce “domain random-
ization” as a solution, later expanded upon by Peng et. al. [23].
Continual learning on incremental simulations can help tackle
the sample inefficiency problem of domain randomization [10]. In
contrast, Operational Space Control [12] avoids domain random-
ization while speeding up training with fewer hyperparameters.
Carr et. al. [3] proposed a domain adaptation strategy approach,

where state knowledge is transferred across semantically related
games. Unlike aforementioned works, in this paper, we transfer the
curriculum and not the policy to handle situations where Sim2Real
fails, e.g., when the observation and action spaces of the simulation
and real environment are different.

CurriculumLearningwas introduced in the early 1990’s, where
it was used for grammar learning [7], control problems [26] and in
supervised classification tasks [2]. CL has been extensively used
for RL, with applications ranging from complex games [9, 34], to
robotics [11], and self-driving cars [24]. In [21], the authors propose
a framework for curriculum learning (CL) in RL, and use it to clas-
sify and survey existing CL algorithms. The three main elements
of CL are task generation, task sequencing, and transfer learning.
Task generation produces a set of source tasks that can be learned
before learning the target task [13, 28]. Task sequencing orders
the generated tasks to facilitate efficient transfer from the source
to the target task [18, 22, 30]. Metaheuristic search methods are a
popular tool to evaluate the performance of the task sequencing
optimization framework [8]. In our work, we propose a framework
to generate the source tasks and optimize their sequence, while
evaluating performance against three baseline approaches. In most
existing methods, generating and optimizing the curricula to learn
a complex task is still time-consuming and sometimes takes longer
compared to learning from scratch. Our proposed framework ad-
dresses this concern by generating, optimizing, and then transfer-
ring the schema of the curriculum from a simple and easy-to-learn
environment to a complex and realistic environment.

3 THEORETICAL FRAMEWORK
3.1 Markov Decision Processes
An episodic Markov Decision Process (MDP) 𝑀 is defined as a
tuple (S,A,𝑝,𝑟,𝛾), whereS is the set of states,A is the set of ac-
tions,𝑝 (𝑠 ′|𝑠, 𝑎) is the transition function,𝑟 (𝑠 ′, 𝑎, 𝑠) is the reward func-
tion and 𝛾 ∈ [0, 1] is the discount factor. For each timestep 𝑡 , the
agent observes a state 𝑠 and performs an action 𝑎 given by its
policy function 𝜋𝜃 (𝑎 |𝑠), with parameters 𝜃 . The agent’s goal is
to learn an optimal policy 𝜋∗, maximizing its discounted return
𝐺0 =

∑𝐾
𝑘=0𝛾

𝑘𝑟 (𝑠 ′
𝑘
, 𝑎𝑘 , 𝑠𝑘) until the end of the episode at timestep 𝐾 .

(a) Target task in Low Fidelity Environment (b) Target task in High Fidelity Environment
(c) Target task in Physical Environment,
using a camera (blue) to interact with fidu-
cials (red). LIDAR (green) is also visible.

Figure 2: Illustration of the final target task in LF, HF and physical environment. The agent performs navigation, breaking
action on 2 trees and 1 rock and then crafts a stone-axe at the crafting table to successfully terminate the task.

3.2 Curriculum Learning (CL)
We define a task-level curriculum as:
Let T be a set of tasks, where 𝑀𝑖 = (S𝑖 ,A𝑖 , 𝑝𝑖 , 𝑟𝑖) is a task in T .
Let DT be the set of all possible transition samples from tasks in T :
DT = {(𝑠, 𝑎, 𝑟, 𝑠 ′) | ∃𝑚𝑖 ∈ T 𝑠 .𝑡 . 𝑠 ∈S𝑖 , 𝑎 ∈A𝑖 , 𝑠 ′∼𝑝𝑖 (·|𝑠, 𝑎), 𝑟 ←
𝑟𝑖 (𝑠, 𝑎, 𝑠 ′)}. A curriculum 𝐶 = [𝑀1, 𝑀2, . . . , 𝑀𝑛] is an ordered list
of tasks, where𝑀𝑖 is the 𝑖𝑡ℎ task in the curriculum. The ordered list
signifies that samples from 𝑀𝑖 must be used for training a policy
before samples from𝑀𝑖+1 are used. The sequence of tasks terminates
on the target task𝑀𝑛 .

3.3 Problem Formulation
The aim of CL is to generate a curriculum and train an agent on
a sequence of tasks {𝑀1, 𝑀2, ..., 𝑀𝑈 }, such that the agent’s perfor-
mance on the final target task (𝑀𝑈) improves relative to learning
from scratch. The domains T𝐻𝐹 and T𝐿𝐹 of possible tasks are sets
of MDPs in the high-fidelity (HF) and the low-fidelity (LF) environ-
ments, respectively. An individual task can be realized by varying
a set of parametric variables and subjecting the task to a set of con-
straints. The parametric variables 𝑃 are a set of attribute-value pair
features [𝑃1, ..., 𝑃𝑛] that parameterize the environment to produce
a specific task. Each 𝑃𝑖 ∈ 𝑃 has a range of possible values that the
feature can take while the 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 of a domain are a set of tasks
attained by determining the goal condition 𝑃𝐺 .

Let CT𝐿𝐹
𝑈

be the set of all curricula over tasks T𝐿𝐹 of length 𝑈
in the LF environment. Similarly, let CT𝐻𝐹

𝑈
be the set of all curric-

ula over tasks T𝐻𝐹 of length 𝑈 in the HF environment. The goal
is to find a curriculum 𝑐𝑈

T𝐿𝐹 in the LF environment that can be
transferred through a set of mapping functions F := {𝑓1, 𝑓2, . . . , 𝑓𝑛}
to attain the curriculum in the HF environment 𝑐𝑈 T𝐻𝐹 . A map-
ping function maps the parametric variables in the LF environment
(𝑃𝐿𝐹) to the parametric variables in the HF environment (𝑃𝐻𝐹). We
characterize the mapping as an affine transformation given by:

𝑃𝐻𝐹 = 𝐴 ⊙ 𝑃𝐿𝐹 + 𝐵
where 𝐴 = [𝑎1, . . . , 𝑎𝑛]𝑇 ∈ R𝑛 and 𝐵 = [𝑏1, . . . , 𝑏𝑛]𝑇 ∈ R𝑛 de-
note linear mapping and translation vector and ⊙ is the Hadamard
product. Thus, a parameter mapping (𝑓𝑖 : 𝑃𝐿𝐹𝑖 → 𝑃𝐻𝐹

𝑖
) is given by:

𝑃𝐻𝐹𝑖 = 𝑎𝑖𝑃
𝐿𝐹
𝑖 + 𝑏𝑖

The source tasks of the curriculum in the HF environment are
learned before final target task as described in Section 3.2.

3.4 Running Example
For the physical environment shown in Fig 2c, we generate Crafter-
TurtleBot (Fig 2b), a realistic simulation of the physical environment.
The aim is to learn a policy in this high-fidelity (HF) environment,
through an automated curriculum transfer from the low-fidelity
(LF) environment (Fig 2a), and perform Sim2Real Policy transfer
from the HF environment to execute the task in the physical envi-
ronment.

The agent’s goal is to break 2 trees to collect 2 pieces of wood,
break a rock to collect a stone and craft a stone axe at the crafting
table. The agent needs to navigate, face the object and perform the
break action to collect it in inventory. The parametric variables for
this task are the width (𝑃𝑊) and height (𝑃𝐻) of the navigable area,
the number of trees (𝑃𝑇,𝑒), rocks (𝑃𝑅,𝑒), and crafting table (𝑃𝐶𝑇)
present, the number of wood (𝑃𝑇,𝑖) and stones (𝑃𝑅,𝑖) present in
the inventory of the agent when the episode starts, and the goal
(𝑃𝐺) of the task. The goal is drawn from a discrete set, which can
be navigating to an item, breaking a subset of the items present in
the environment or crafting the stone axe.

As described in Fig 1, the HF target task is mapped to its LF
equivalent. The simplified LF dynamics allow efficient curriculum
optimization. Once the curriculum is generated, each task of the
LF is mapped back to generate an equivalent HF task, which are
learned through a curriculum to develop a successful task policy for
the target HF task. This policy is then transferred to the Physical
Robot through a Sim2Real Transfer.

3.5 Curriculum Transfer Approach
ACuTE consists of three parts: Generating a LF target task, Cur-
riculum generation in LF, and Task sequencing and learning in HF.
Algorithm 1 presents our approach. The first step entails generat-
ing the LF target task from the HF target task. To obtain the task
parameters for the LF task, we pass the HF target task parame-
ters (𝑃𝐻𝐹𝑈) through the inverse of the affine mapping functions
𝑓 −1 (𝑃𝐻𝐹𝑈) ∀𝑓 ∈ F followed by Generate_Env (line 1), to obtain
the parameters for the target task in the LF environment. The two
requirements for obtaining a corresponding mapping are as follows:

Low-Fidelity Environment High-Fidelity Environment

Mapping

LF Parameters

Grid Area
Ɍ2 = [8,8]

Environment
Trees = 0
Rocks = 2
Crafting Table = 1

Inventory
Trees = 2
Rocks = 0
Stone-Axe = 0

Goal - Crafting

HF Parameters

Map Area
Ɍ2 = [3.2,3.2] m2

Environment
Trees = 0
Rocks = 2
Crafting table = 1

Inventory
Trees = 2
Rocks = 0
Stone-Axe = 0

Goal - Crafting

Figure 3: Illustrative example of the low-fidelity to high-fidelity mapping in the crafting task.

• Each task parameter in the HF environment (𝑃𝐻𝐹) needs a
corresponding task parameter in the LF environment (𝑃𝐿𝐹).
∀ 𝑃𝐻𝐹

𝑖
∈ 𝑃𝐻𝐹 ∃ 𝑃𝐿𝐹

𝑖
s.t. 𝑓𝑖 (𝑃𝐿𝐹𝑖) = 𝑃

𝐻𝐹
𝑖

. Varying these task
parameters yields different tasks that are sequenced to form
a curriculum.
• The final task in the HF environment must be mapped to
the final task in the LF environment. ∀𝑓 ∈ F ∃ 𝑓 (𝑃𝐿𝐹𝑈) =
𝑃𝐻𝐹𝑈 Thus, we can guarantee that each source task obtained
through the curriculum in the LF can be mapped to a corre-
sponding task for the HF environment.

The actions in the HF can be complex, but each action can be
simplified to an LF action that need not be correspondingly equiva-
lent. Our approach does not assume an equivalency between the
state or the action spaces between the LF and the HF environments,
but only on the two requirements listed above. To generate and
sequence the source tasks in the LF environment, we compared
two approaches. The first approach, called Handcrafted Curriculum
Transfer (HC), involves a human expert deciding the parametric
variables 𝑃𝐻𝐶 for the tasks for the curriculum (line 3). The second
approach, Automated Curriculum Transfer (AC), automatically gen-
erates and optimizes a sequence of source tasks from the parametric
variables 𝑃𝐴𝐶 for the agent to learn the final task with the fewest
number of episodes (line 5).

3.6 Handcrafted and Automated Curriculum
Transfer Generation

To optimize curricula through Handcrafted Curriculum Transfer
(Generate_HC) (HC), a human expert determines the parametric
variables 𝑃𝐻𝐶 and the task sequence for the source tasks in the
curriculum. Whereas, for optimizing curriculum using the Auto-
mated (AC) procedure (Generate_AC), we use the approach given in
Algorithm 2.We start from an empty sequence of source task param-
eters 𝑃𝑊 . The algorithm calls a parameterizing function (Init_Src)
that assigns random values to the parametric variables for the first
source task 𝑃𝐿𝐹1 from the range of values 𝑃𝐴𝐶 can attain while si-
multaneously initializing an RL agent (Init_Agent). Based on 𝑃𝐿𝐹1 ,
the algorithm generates the first task for the agent,𝑀𝐿𝐹

1 , using the
function (Generate_Env). The agent attempts learning this source
task (Learn) with the initial policy 𝜋1,𝑤,𝑖𝑛𝑖𝑡 , until the stopping cri-
terion is met. The stopping criterion determines if the agent’s goal
rate (𝛿) is≥𝛿𝐺 in the last 𝑠 episodes (Algorithm 1 line 12). Failure
to meet the stopping criterion implies that the agent has reached

maximum permitted episodes (termed budget (𝑏)) signifying 𝛿 <𝛿𝐺 .
The value for 𝛿𝐺 is set at 0.85 for our experiments.

In AC, the first task of the curriculum is randomly initialized 𝑁
times and learned until stopping criterion is met. The algorithm then
finds the𝑊 most promising solutions (Best_Candidates), based
on fewest interactions to meet the stopping criterion. To optimize
the sequence of the curriculum, we use beam search [17]. Beam
search is a greedy search algorithm that uses a breadth-first search
approach to formulate a tree. At each level of the tree, the algorithm
sorts all the (𝑁 ×𝑊) successors of the tree (𝑁 successor tasks for
each task of𝑊) at the current level in increasing order of number
of episodes required to learn the task𝑀𝐿𝐹

𝑢,𝑤,𝑛 . Then, it selects (𝑊)
number of best tasks at each level, given by fewest interactions to
reach stopping criterion, and performs the same step until the tree
reaches the desired number of levels (𝑈).

Now, using the parametric variables 𝑃𝐿𝐹1 for each task in the
beam (𝑤 ∈𝑊), the algorithm generates parametric variables 𝑃𝐿𝐹2
(Init_Inter) for the next task𝑀𝐿𝐹

2 in the curriculum. This is done
by choosing a goal 𝑃𝐺 not encountered by the agent until the cur-
rent level 𝑢 in the beam 𝑤 , and randomly initializing parametric
variables ≥ the minimum required to accomplish this goal. The

Algorithm 1 ACuTE(𝑁,𝑊 ,𝑈 ,𝑃𝐻𝐹𝑈 ,𝑓 ,𝑠,𝑏)
Output: HF target task policy: 𝜋𝐻𝐹

𝑈

Algorithm:
1: 𝑀𝐿𝐹

𝑈
←− Generate_Env(𝑓 −1 (𝑃𝐻𝐹𝑈))

2: if curriculum = HC then
3: 𝐶𝐿𝐹 =Generate_HC(𝑀𝐿𝐹

𝑈
,𝑈)

4: else if curriculum = AC then
5: 𝐶𝐿𝐹 =Generate_AC(𝑀𝐿𝐹

𝑈
,𝑈 , 𝑁 ,𝑊 , 𝑠𝑒𝑒𝑑𝑠)

6: end if
7: 𝜋𝐻𝐹

0 ←− ∅
8: for 𝑢 ∈ 𝑈 do
9: 𝑀𝐻𝐹

𝑢 ←− 𝑓 (𝐶𝐿𝐹
𝑢)

10: while episode < 𝑏 do
11: 𝜋𝐻𝐹

𝑢 = Learn(𝑀𝐻𝐹
𝑢 , 𝜋𝐻𝐹

𝑢−1)
12: if E[𝜋𝐻𝐹

𝑢 [𝑒𝑝𝑖𝑠𝑜𝑑𝑒−𝑠 :]] ≥ 𝛿𝐺 then
13: break
14: end if
15: end while
16: end for
17: return 𝜋𝐻𝐹

𝑈

Algorithm 2 Generate_AC(𝑁,𝑊 ,𝑈 ,𝑀𝐿𝐹
𝑈
, 𝑠𝑒𝑒𝑑𝑠)

Output: LF Curriculum Parameters: 𝑃𝑊
Placeholder Initialization: Timesteps: 𝑇1, . . . ,𝑇𝑈←∅
LF task params for all tasks at each beam level 𝜉1, . . . , 𝜉𝑈 ← ∅
LF task params at each width and level 𝜉1,𝑊 , 𝜉2,𝑊 , . . . , 𝜉𝑈 ,𝑊 ← ∅
LF curriculum params 𝑃𝑊 ← ∅
LF task policies for all tasks at each beam level: Π1, . . . ,Π𝑈 ← ∅
LF task policies for each width and level: Π1,𝑊 , . . . ,Π𝑈 ,𝑊 ← ∅
Algorithm:
1: for 𝑢 ∈ 𝑈 do
2: for 𝑤 ∈𝑊 do
3: for 𝑛 ∈ 𝑁 do
4: if 𝑢 = 1 then
5: 𝑃𝐿𝐹𝑢 ← Init_Src(𝑀𝐿𝐹

𝑈
)

6: 𝜋1,𝑤,𝑖𝑛𝑖𝑡 = Init_Agent(𝑠𝑒𝑒𝑑𝑠)
7: else
8: 𝑃𝐿𝐹𝑢 ← Init_Inter(𝜉𝑢−1,𝑊 [𝑤],𝑀𝐿𝐹

𝑈
)

9: 𝜋𝑢,𝑤,𝑖𝑛𝑖𝑡 = Load_Agent(Π𝑢−1,𝑊 [𝑤])
10: end if
11: 𝜉𝑢 [𝑤,𝑛] ← 𝑃𝐿𝐹𝑢

12: 𝑀𝐿𝐹
𝑢,𝑤,𝑛 = Generate_Env(𝑃𝐿𝐹𝑢)

13: (𝑡𝑢,𝑤,𝑛, 𝜋𝑢,𝑤,,𝑛,𝑓 𝑖𝑛) = Learn(𝑀𝐿𝐹
𝑢,𝑤,𝑛, 𝜋𝑢,𝑤,𝑛,𝑖𝑛𝑖𝑡)

14: 𝑇𝑢 [𝑤,𝑛] ← 𝑡𝑢,𝑤,𝑛 , Π𝑢 [𝑤,𝑛] ← 𝜋𝑢,𝑤,𝑛,𝑓 𝑖𝑛

15: end for
16: end for
17: 𝑇𝑢,𝑊 ,Π𝑢,𝑊 , 𝜉𝑢,𝑊 = Best_Candidates(𝑇𝑢 ,Π𝑢 ,𝑊 ,𝜉𝑢)
18: end for
19: 𝑃𝑊 ← Best_LF_Params(𝜉1,𝑊 , 𝜉2,𝑊 , . . . , 𝜉𝑈 ,𝑊)
20: return 𝑃𝑊

agent then attempts learning𝑀𝐿𝐹
2 with the final policy of the pre-

vious source task in the beam 𝜋1,𝑤,𝑓 𝑖𝑛 (Load_Agent). The task ter-
minates when the agent meets the stopping criterion. The algorithm
finds the𝑊 most promising solutions, given by fewest interactions
to reach stopping criterion (Best_Candidates) and carries out this
procedure iteratively, until the final target task𝑀𝐿𝐹

𝑈
is learned. The

parameters of the curriculum with the lowest number of episodes
to reach the stopping criterion is selected as the most promising
solution (Best_LF_Params) 𝑃𝑊 for learning the target task. The
curriculum generation procedure requires the length of the curricu-
lum𝑈 to be >= the number of goals attainable. This ensures all the
goals available (𝑃𝐺) are encountered by the agent in the curriculum.

3.6.1 Task Sequencing and Learning in HF. Once the LF curriculum
parametric variables (𝑃𝑊) are obtained, they are passed through
the set of mapping functions (F) to attain the task parameters in
HF, generating the curriculum source tasks from these parameters.
The agent attempts learning the first source task 𝑀𝐻𝐹

1 with an
initial policy 𝜋𝐻𝐹1,𝑖𝑛𝑖𝑡 . The task terminates when the agent meets the
stopping criterion, generating the final policy 𝜋𝐻𝐹1,𝑓 𝑖𝑛 . This learned

policy is used as an initial policy for the next source task𝑀𝐻𝐹
2 in the

curriculum. This procedure is carried out iteratively, culminating
at the HF target task, returning 𝜋𝐻𝐹

𝑈
(Algorithm 1, line 8-15).

4 EXPERIMENTAL RESULTS
We aim to answer the following questions: (1) Does the automated
curriculum transfer yield sample efficient learning? (2) Does it

scale to environments that are too difficult to learn from scratch?
(3) Is the curriculum transfer framework independent of the RL
algorithm used to generate the curriculum? (4) Can we perform
a Sim2Real transfer to a physical robot? (5) Can the curriculum
transfer framework yield successful convergence with imperfect
(e.g., noisy) mappings between the HF and LF environments? 1

To answer the first question, we evaluate our curriculum transfer
method on grid-world as low-fidelity (LF) and Crafter-TurtleBot
as the high-fidelity (HF) environments. In the LF environment, the
agent can move 1 cell forward if the cell ahead is clear or rotate
𝜋/2 clockwise or counter-clockwise. In the target task, the agent
receives a reward of +1×103 upon crafting a stone axe, and −1
reward for all other steps. In the source tasks of the curriculum, the
agent also receives +50 reward for breaking an item that is needed
for crafting. This reward shaping is absent in the final target task.
The agent’s sensor emits a beam at incremental angles of 𝜋/4 to
determine the closest object in the angle of the beam (i.e., the agents
received a local-view of its environment). Two additional sensors
provide information on the amount of wood and stones in the
agent’s inventory (See Appendix Section A.1 for further details).

The HF environment, Crafter-TurtleBot, is structurally similar
to the grid-world domain, but differs in that objects are placed in
continuous locations to more closely model the real-world. The
agent is a TurtleBot, rendered in PyBullet [5]. An example of the
LF↔ HF mapping between the tasks in LF and HF environments
is shown in Fig 3. Here, the task mapping is demonstrated on an
intermediate task of the curriculum, whose goal is to break a rock
and craft a stone axe at the crafting table. The taskmapping function
ensures the LF and HF tasks have the same number and types
of objects in the environments and the inventory. The mapping
considers increased navigable area in the HF and does not assume
the positions of the objects are preserved. In each episode, objects
are positioned randomly within the boundaries of the environment.
Refer to Appendix A.6 for details on mapping function set F .

In the HF environment, the agent’s navigation actions are mov-
ing forward 0.25 units and rotating by 𝜋

9 radians. The break and
craft actions and the reward shaping in source tasks is identical
to the LF environment. The HF agent’s sensor is similar to the LF
agent’s sensor; however, it emits beams at incremental angles of
𝜋
10 , accounting for the large state space of the location of objects.
To evaluate the performance of curriculum transfer, we used the

jumpstart [8, 14] metric. Jumpstart evaluates the performance in-
crease over𝐷 episodes after transfer from a source task as compared
to a baseline approach. Jumpstart is defined as:

𝜂 𝑗 :=
1
𝐷

𝐷∑︁
𝑖=1
(𝐺𝑖
𝑀𝑐

𝑓

−𝐺𝑖
𝑀𝑏

𝑓

)

where 𝐺𝑖
𝑀𝑐

𝑓

and 𝐺𝑖
𝑀𝑏

𝑓

are the returns obtained during episode 𝑖 in
task 𝑀𝑐

𝑓
(learning through automated curriculum transfer) and the

baseline task𝑀𝑏
𝑓
respectively. Another metric we used is the time

to threshold metric [21, 31], which computes how faster an agent
can learn a policy that achieves expected return𝐺 ≥ 𝛿 on the target
task if it transfers knowledge, as opposed to learning from another
approach, where 𝛿 is desired performance threshold.

1Code available at: https://github.com/tufts-ai-robotics-group/ACuTE

https://github.com/tufts-ai-robotics-group/ACuTE

(a) LF - gridworld (b) HF - Crafter-Turtlebot (c) Crafter-Turtlebot Baselines

(d) LF w/ Fire - gridworld (e) HF w/ Fire - Crafter-Turtlebot (f) Crafter-Turtlebot w/ Fire - Baselines

Automated
Curriculum
Transfer (ours)

Handcrafted
Curriculum
Transfer

Learning
from scratch

Self Play
(Sukhbaatar
2017)

Domain
Adaptation
(Carr 2019)

Teacher Student
(Matiisen 2017)

Figure 4: Learning Curves for low fidelity (LF) and high fidelity (HF) environments with and without Fire.

4.1 Curriculum Generation in High Fidelity
We used the algorithm presented in Algorithm 1 to generate and
sequence the source tasks using the handcrafted curriculum transfer
(HC) and the automated curriculum transfer (AC) approach. The
navigable area in target task𝑀𝐿𝐹

𝑈
in low-fidelity (LF) environment

is a grid of R2
𝐿𝐹
−→ [10×10], as seen in Fig 2a, and the high-fidelity

(HF) target task area is a continuous R2
𝐻𝐹
−→ [4𝑚×4𝑚] space, as

seen in Fig 2b. Both these environments contain 4 trees, 2 rocks
and 1 crafting table, placed at random locations.

The RL algorithm was a Policy Gradient [33] network with 𝜖-
greedy action selection for learning the optimal policy. The episode
terminates when the agent successfully crafts a stone axe or exceeds
the total number of timesteps permitted, which is 102 in the LF
environment and 6×102 in the HF environment. All experiments
are averaged over 10 trials. (See Appendix Section A.2).

For generating the AC in the LF environment, we set the width
of the beam search algorithm at𝑊 =4, and the length of the beam
at 𝑁 = 20, the curriculum length was 𝑈 = 4, and budget 𝑏 = 5 ×
103. We obtained the parameters after performing a heuristic grid
search over the space of the search algorithm. We evaluated our
curriculum transfer framework with four other baselines. Learning
from scratch trains the final HF target task without any curriculum.
We also adopted three approaches from the literature designed for
speeding-up RL agents: Asymmetric Self-play [30], Teacher-Student
Curriculum learning [18] and Domain Adaptation for RL [3]. The
first two baselines do not make use of the LF environment while the
third uses the LF environment as the source domain. All baseline

approaches involve reward shaping similar to the source task of
the automated curriculum transfer approach.

The results in Figs 4a and 4b show that the AC approach results
in a substantial improvement in learning speed, and is comparable
to the curriculum proposed by a human expert. Furthermore, as
shown in Fig 4f, the curriculum transfer method outperforms the
three baseline approaches2 in terms of learning speed. The learning
curve for our curriculum transfer approaches has an offset on the x-
axis to account for the time steps used to go through the curriculum
before moving on to the target task, signifying strong transfer [31].
The other three baseline approaches perform better than learning
from scratch, but do not outperform the curriculum transfer ap-
proach. Self-Play requires training a goal-proposing agent, which
contributes to the sunk cost for learning. Whereas, Domain Adap-
tation relies on the similarity between the tasks. Teacher-Student
curriculum learning requires defining the source tasks of the cur-
riculum beforehand, and the teacher attempts to optimize the order
of the tasks. All baselines involve interactions in the costly high-
fidelity domain for generating/optimizing the curriculum, which
proves to be costly. This sunk cost has been accounted in the learn-
ing curves by having an offset on the x-axis. See Appendix Section
A.3 for details on our adaptation and tuning of these three baselines.

Table 1 compares the jumpstart values for AC with the baselines.
The higher jumpstart, the better performance of the curriculum.

2Refer Appendix Section A.5 for learning curves for reward

Env Methods ΔJumpstart
(Return)

ΔTime-to-
threshold

HF
AC −→ Learning from scratch 304 ± 242 5.4 ×107
AC −→ Carr et. al. 231±160 3.5 ×107
AC −→ Sukhbaatar et. al. 85±130 2.1 ×107
AC −→Matiisen et. al. 568 ±205 6.3 ×107

HF
w/
Fire

AC −→ Learning from scratch 628±284 1.02 ×108
AC −→ Carr et. al. 519±126 8.4 ×107
AC −→ Sukhbaatar et. al. 288±87 7.8 ×107
AC −→Matiisen et. al. 346±121 4.6 ×107

Table 1: Table comparing jumpstart (mean±SD), and time to thresh-
old for learning the final target task. Here, HF and AC refer to high-
fidelity and automated curriculum transfer respectively. Time-to-
threshold measured in timesteps.

AC achieves high positive jumpstart and time to threshold perfor-
mance in comparison to baseline approaches, denoting improved
performance and quicker learning (magnitude >107 timesteps).

4.2 Results with Added Complexity
To answer the second question, we evaluated our framework in a
situation where the target task in the HF environment is too difficult
to learn from scratch. To do this, both the LF and HF environments
were modified by adding a new type of object, “fire”, such that when
the agent comes in contact with it, the episode terminates instantly
with a reward of−1×103.

The parameters listed in Section 4.1 are used to optimize AC in
the LF environment. From learning curves in Figs. 4d, 4e, 4f and
Table 1, we observe our curriculum transfer approach, AC, consis-
tently achieving higher average reward, better jumpstart and time
to threshold performance compared to baselines. Learning from
scratch fails to converge to a successful policy in 108 interactions,
while the other baseline achieves marginally better performance
than learning from scratch. Table 1 summarizes the jumpstart and
the time-to-threshold between the approaches. Our approach still
achieves a high jumpstart, and converges much quicker than other
approaches. Through this experiment, we see our AC approach
extrapolates to challenging environments, producing quicker and
efficient convergence. Refer Appendix section A.1.1 for trends ob-
served in different runs in our AC approach.

4.3 Results with Different RL Algorithms
To answer the third question, we conducted experiments by making
the HF learning algorithm different (PPO [27] and DQN [19]) from
the RL algorithm used for generating the curriculum in the LF
environment (Policy gradient). Fig 5 shows the result of this test

Figure 5: Learning HF target task through different RL algorithms.

(See Appendix A.4 for hyperparameters). In all the cases, learning
through a curriculum is quicker and more efficient than learning
from scratch. Here, we do not intend to find the best RL algorithm
to solve the task, but demonstrate that actor-critic networks, policy
gradients and value function based approaches learn the HF target
task through curriculum, irrespective of the RL algorithm used to
optimize the LF curriculum.

4.4 Noisy Mappings
In the above sections, we evaluated the curriculum transfer schema
on accurate mappings between the two environments. In certain
partially observable environments, it might not be possible to ob-
tain such an accurate mapping between the two environments. To
demonstrate the efficacy of our approach in imperfect mappings,
we evaluate the experiments by incorporating noise in the mapping
function. The noisy mapping function involves a multivariate noise
over the range of the parametric variables. While obtaining the
noisy parameters, we do not incorporate any noise in the parame-
ter for the goal condition, as we can safely assume that the goals
have been mapped accurately. The noisy mappings are given by:

𝑃𝑛𝑜𝑖𝑠𝑦 = 𝑃𝑒𝑥𝑎𝑐𝑡 + N(0, Σ)

where Σ =


𝜎1 0 0 . . .

0 𝜎2 0 . . .

.

. 𝜎𝑛

𝑛×𝑛
is the covariance matrix, which

is symmetric and positive semi-definite, and 𝜎𝑖 = (𝑚𝑎𝑥 (𝑃𝑖) −
𝑚𝑖𝑛(𝑃𝑖))/6, covers the entire range of the parametric variable in six
standard deviations. We verify whether the noisy parameters meet
the minimum requirements of reaching the goal for the sub-task.
If the requirements are not met, we generate a new set of noisy
parameters until the requirements are met.

The learning curves for the automated curriculum transfer gen-
erated through noisy parameters are shown in Fig 6. We compare
its performance with learning curves for automated curriculum
transfer generated through exact mappings, and with other baseline
approaches present in the literature. Even with noisy mappings,
the automated curriculum transfer outperforms other curriculum
approaches, and performs comparable to the automated curriculum
transfer with exact mappings. On the complicated task (HF with
Fire), the automated curriculum transfer with noisy mappings takes
longer to converge on the source tasks of the curriculum, yet it
achieves a significant performance advantage over other baselines.

4.5 Runtime Comparison
Since our approach relies on the low-fidelity environment for cur-
riculum generation, its sunk cost in computational runtime is sig-
nificantly lesser than baseline approaches, in which curriculum
generation requires extensive interactions in the costly high-fidelity
environment. Fig 7 compares the computational runtime (in CPU
Hours) required to run one trial (with each episode having a maxi-
mum of 6×102 timesteps) of the high-fidelity task until the stopping
criterion is met. The experiments were conducted using a 64-bit
LinuxMachine, having Intel(R) Core(TM) i9-9940X CPU@ 3.30GHz
processor and 126GB RAMmemory. The sunk cost of our automated
curriculum transfer approach involves the interactions required to

Automated
Curriculum
Transfer -
exact mapping

Self Play
(Sukhbaatar
2017)

Domain
Adaptation
(Carr 2019)

Teacher Student
(Matiisen 2017)

Automated
Curriculum
Transfer-
noisy mapping

(a) Noisy mappings - HF (b) Noisy mappings - HF w/ Fire

Figure 6: Comparison of Learning Curves for high fidelity (HF) environments generated using noisy mappings.

Figure 7: Runtime comparison of different approaches.

optimize the curriculum in the LF environment, and the interactions
required to learn the source tasks in the HF environment.

5 TRANSFER TO A PHYSICAL ROBOT
To answer the fourth question and demonstrate the efficacy of this
approach in the real-world, we performed a Sim2Real transfer on
a TurtleBot after the simulated robot had learned the target task
through the curriculum. We demonstrate object breaking and item
retrieval, followed by crafting, through a TurtleBot which reads
fiducials scattered throughout the environment.

We made use of the TurtleBot 2, modified to have an on-board
laptop (running Ubuntu 16.04 and ROS Kinetic) which interfaces
with a camera (the Intel D435i) and a LIDAR unit (the Slamtec
RPLIDAR-A2). These additional sensors were used to provide more
stable odometry via the Canonical Scan Matcher [4], as the default
odometry stack was found to have too much drift to be relied upon.
The full platform is visible in Fig 2c. Making use of the modified
odometry stack, movement was provided as actions that attempt
movement in the approximate units expected by the high-fidelity
environment.

In this setting, the target task policy learned through our auto-
mated curriculum transfer approach in the high-fidelity Crafter-
TurtleBot environment is transferred to run in this physical setting.
No learning is taking place on the agent as the physical experimen-
tation continues. These fiducials are QR codes corresponding to the
different possible objects in the known environment: trees, rocks,
and the crafting table. When demonstrated, the agent controls the
TurtleBot to navigate to the Tree locations before calling the break
action, and is then visible navigating to the Rock locations before

again calling the break action. The agent completes the sequence
by navigating to the crafting table before calling the craft action.
The policy is run without any modifications.

It is important to note that breaking and crafting actions are
successful only in the event of reading the fiducial. In this way, we
restrict the agent to being successful only in the cases where it has
operated successfully in the physical environment, allowing the
agent to proceed only in the event of a sensible Sim2Real transfer.

6 CONCLUSION AND FUTUREWORK
We proposed a framework for automated curriculum transfer from
an easy-to-solve environment to a real-world scenario. Our cur-
riculum transfer approach generated results comparable to a cur-
riculum generated by a human expert, exceeding the baseline per-
formances. Our experimental evaluations show improved learning
time and jumpstart performance on the final target task, even when
additional challenging elements are introduced. We demonstrated
ACuTE is independent of the RL algorithm used to generate the
curriculum and is easily Sim2Real transferable to a physical robot
setting and is also scalable to environments with inexact mappings.

An extension of our approach will be to scale the algorithm to
multi-agent settings, with inter-agent curriculum transfer. A limita-
tion of this work is that the task mapping is generated heuristically,
a future work would involve automating the mapping generation.
Future work can investigate how a LF version of the environment
can be created autonomously, and providing a theoretical guarantee
for the curriculum transfer approach. Second, while in this work we
only transferred the schema of the curriculum, our baseline compar-
ison with Domain Adaptation suggests that DA can be combined
with curriculum transfer such that the agent can learn the tasks in
the curriculum even faster. Finally, our algorithms for optimizing
the curriculum in the LF environment did not make use of any data
from the HF domain, and in future work, we plan to modify our
framework to use interaction experience from both domains when
constructing the curriculum.

ACKNOWLEDGMENTS
The research presented in this paper was conducted with partial
support from DARPA (contract W911NF-20-2-0006) and AFRL (con-
tract FA8750-22-C-0501).

REFERENCES
[1] David Abel, Yuu Jinnai, Sophie Yue Guo, George Konidaris, and Michael Littman.

2018. Policy and value transfer in lifelong reinforcement learning. In International
Conference on Machine Learning. PMLR, 20–29.

[2] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.
Curriculum learning. In Proc.of the 26th annual Intl Conf. on machine learning.
41–48.

[3] Thomas Carr, Maria Chli, and George Vogiatzis. 2019. Domain Adaptation for
Reinforcement Learning on the Atari. In Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems. 1859–1861.

[4] Andrea Censi. 2008. An ICP variant using a point-to-line metric. In 2008 IEEE
International Conference on Robotics and Automation. 19–25. https://doi.org/10.
1109/ROBOT.2008.4543181

[5] Erwin Coumans and Yunfei Bai. 2016–2019. PyBullet, a Pythonmodule for physics
simulation for games, robotics and machine learning. http://pybullet.org.

[6] Felipe Leno Da Silva and Anna Helena Reali Costa. 2019. A survey on transfer
learning for multiagent reinforcement learning systems. Journal of Artificial
Intelligence Research 64 (2019), 645–703.

[7] Jeffrey L Elman. 1993. Learning and development in neural networks: The
importance of starting small. Cognition 48, 1 (1993), 71–99.

[8] Francesco Foglino, Christiano Coletto Christakou, and Matteo Leonetti. 2019.
An optimization framework for task sequencing in curriculum learning. In 2019
Joint IEEE 9th Intl Conf. on Development and Learning and Epigenetic Robotics
(ICDL-EpiRob). IEEE, 207–214.

[9] Yifan Gao and Lezhou Wu. 2021. Efficiently Mastering the Game of NoGo with
Deep Reinforcement Learning Supported by Domain Knowledge. Electronics 10,
13 (2021), 1533.

[10] Josip Josifovski, Mohammadhossein Malmir, Noah Klarmann, and Alois and
Knoll. 2020. Continual Learning on Incremental Simulations for Real-World
Robotic Manipulation Tasks. In 2nd Workshop on Closing the Reality Gap in
Sim2Real Transfer for Robotics at Robotics: Science and Systems (R:SS) 2020. Nicht
veröffentlichter Vortrag. https://sim2real.github.io/assets/papers/2020/josifovski.
pdf

[11] Andrej Karpathy and Michiel Van De Panne. 2012. Curriculum learning for motor
skills. In Canadian Conference on Artificial Intelligence. Springer, 325–330.

[12] Manuel Kaspar, Juan David Munoz Osorio, and Jürgen Bock. 2020. Sim2Real
Transfer for Reinforcement Learning without Dynamics Randomization. arXiv
preprint arXiv:2002.11635 (2020).

[13] Anil Kurkcu, Domenico Campolo, and Keng Peng Tee. 2020. Autonomous Cur-
riculum Generation for Self-Learning Agents. In 2020 16th Intl Conf. on Control,
Automation, Robotics and Vision (ICARCV). IEEE, 1104–1111.

[14] Alessandro Lazaric. 2012. Transfer in reinforcement learning: a framework and
a survey. In Reinforcement Learning. Springer, 143–173.

[15] Yong Liu, Yujing Hu, Yang Gao, Yingfeng Chen, and Changjie Fan. 2019. Value
Function Transfer for DeepMulti-Agent Reinforcement Learning Based onN-Step
Returns.. In IJCAI. 457–463.

[16] Yaxin Liu and Peter Stone. 2006. Value-function-based transfer for reinforcement
learning using structure mapping. In AAAI. 415–420.

[17] Bruce T Lowerre. 1976. The HARPY speech recognition system. Technical Report.
Carnegie Mellon University, PA, Department of Computer Science.

[18] Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. 2020. Teacher-
Student Curriculum Learning. IEEE Trans. Neural Networks Learn. Syst. 31, 9
(2020), 3732–3740. https://doi.org/10.1109/TNNLS.2019.2934906

[19] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg

Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518, 7540
(Feb. 2015), 529–533. https://doi.org/10.1038/nature14236

[20] Akshay Narayan, Zhuoru Li, and Tze-Yun Leong. 2017. SEAPoT-RL: selective
exploration algorithm for policy transfer in RL. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, Vol. 31.

[21] Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor,
and Peter Stone. 2020. Curriculum Learning for Reinforcement Learning Domains:
A Framework and Survey. J. of Machine Learning Research 21 (2020), 1–50.

[22] Sanmit Narvekar, Jivko Sinapov, and Peter Stone. 2017. Autonomous Task Se-
quencing for Customized Curriculum Design in Reinforcement Learning.. In
IJCAI. 2536–2542.

[23] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel.
2018. Sim-to-real transfer of robotic control with dynamics randomization. In
2018 IEEE Intl. Conf. on robotics and automation (ICRA). IEEE, 1–8.

[24] ZhiqianQiao, KatharinaMuelling, JohnMDolan, Praveen Palanisamy, and Priyan-
tha Mudalige. 2018. Automatically generated curriculum based reinforcement
learning for autonomous vehicles in urban environment. In 2018 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 1233–1238.

[25] Mohammad Rostami, David Isele, and Eric Eaton. 2020. Using task descriptions
in lifelong machine learning for improved performance and zero-shot transfer.
Journal of Artificial Intelligence Research 67 (2020), 673–704.

[26] Terence D Sanger. 1994. Neural network learning control of robot manipulators
using gradually increasing task difficulty. IEEE transactions on Robotics and
Automation 10, 3 (1994), 323–333.

[27] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. CoRR abs/1707.06347 (2017).
arXiv:1707.06347 http://arxiv.org/abs/1707.06347

[28] Felipe Leno Da Silva and Anna Helena Reali Costa. 2018. Object-oriented cur-
riculum generation for reinforcement learning. In Proc.of the 17th Intl Conf. on
Autonomous Agents and MultiAgent Systems. 1026–1034.

[29] Jivko Sinapov, Sanmit Narvekar, Matteo Leonetti, and Peter Stone. 2015. Learning
inter-task transferability in the absence of target task samples. In Proc.of the 2015
Intl Conf. on Autonomous Agents and Multiagent Systems. 725–733.

[30] Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur
Szlam, and Rob Fergus. 2018. Intrinsic Motivation and Automatic Curricula via
Asymmetric Self-Play. In International Conference on Learning Representations.

[31] Matthew E Taylor and Peter Stone. 2009. Transfer learning for reinforcement
learning domains: A survey. J. of Machine Learning Research 10, 7 (2009).

[32] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter
Abbeel. 2017. Domain randomization for transferring deep neural networks from
simulation to the real world. In 2017 IEEE/RSJ Intl Conf. on Intelligent Robots and
Systems (IROS). IEEE, 23–30.

[33] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8, 3-4 (1992), 229–256.

[34] Yuechen Wu, Wei Zhang, and Ke Song. 2018. Master-Slave Curriculum Design
for Reinforcement Learning.. In IJCAI. 1523–1529.

[35] Yunzhi Zhang, Pieter Abbeel, and Lerrel Pinto. 2020. Asymmetric self-play for
automatic goal discovery in robotic manipulation. Advances in Neural Information
Processing Systems Deep Reinforcement Learning Workshop (2020).

[36] Yunzhi Zhang, Pieter Abbeel, and Lerrel Pinto. 2020. Automatic curriculum
learning through value disagreement. Advances in Neural Information Processing
Systems 33 (2020).

https://doi.org/10.1109/ROBOT.2008.4543181
https://doi.org/10.1109/ROBOT.2008.4543181
http://pybullet.org
https://sim2real.github.io/assets/papers/2020/josifovski.pdf
https://sim2real.github.io/assets/papers/2020/josifovski.pdf
https://doi.org/10.1109/TNNLS.2019.2934906
https://doi.org/10.1038/nature14236
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

A Appendix

A.1 Curriculum example

An example of the curriculum generated by the Automated Curriculum proce-
dure is shown in Fig 1. The goal of the agent in the first source task (Task-1) is
to navigate to the rock present in the environment. Once the agent meets the
stopping criteria required, the agent uses the learned policy to learn the next
source task (Task-2) in the curriculum. The goal of the agent in the second
source task is to navigate to the object present in the environment and break it
to collect the object in the agent’s inventory. Similarly, when the agent meets
the stopping criteria, the policy is transferred to learn Task-3, whose goal is
to break the trees and rocks present in the environment, collect them in the
inventory and then craft a stone-axe at the crafting table.

Once the agent has learned all the source tasks in the curriculum, the agent
attempts learning the final target task, as shown in the figure. As shown in the
example, the agent is exposed to all the sub-goals available in the environment
(PG), and is thus able to learn the final target task efficiently, as seen from the
learning curves.

Figure 1: An example of the Automated Curriculum procedure in the low-fidelity
environments. The agent learns complex tasks incrementally, before learning the final
target task.

To generate the source tasks in the high-fidelity environment, each of the LF
source tasks is mapped to generate the HF source tasks. The HF source tasks
are learned iteratively, culminating in the HF target task. The sub-goal can be
either to break the required number of items or to craft a stone-axe.

The range of values attained by the parametric variables is listed in the table
1 below.

1

Parameter Minimum value Maximum value

Width LF - 6, HF - 2m LF - 10, HF - 4m

Height LF - 6, HF - 2m LF - 10, HF - 4m

Number of trees 0 5

Number of rocks 0 2

Number of crafting
tables

0 1

Table 1: Parameters used for training the Policy Gradient on the High-Fidelity task

A.1.1 Trends in curriculum optimization

We observed some interesting trends while computing the automated curriculum
transfer. For the complicated HF task with “fire”, the agent’s approach to
optimizing the sequence of source tasks involved learning to avoid the “fire”
object in a larger grid, followed by learning to learning to break and craft.

This was in contrast to the handcrafted and teacher-student baseline ap-
proaches that tried to incorporate the fire object in the later stages of curricu-
lum. If the detrimental “fire” object was introduced in later stages, the agent
tried to re-learn the policies it had already learned and thus spent longer in
optimizing the curriculum. Thus, we observe that the automated curriculum
transfer approach was able to better generalize to the difficult task through its
beam search algorithm, as it can identify the bottlenecks in the pipeline early
on, and tackle them accordingly.

A.2 Policy gradient implementation details

The experiments were conducted using a 64-bit Linux Machine, having Intel(R)
Core(TM) i9-9940X CPU @ 3.30GHz processor and 126GB RAM memory. The
maximum duration for running the experiments was set at 24 hours.

2

Parameter Value

discount factor γ 0.995

learning rate α 1×10−3

optimizer RMSProp

Gradient moving average decay
factor ρ

0.99

exploration rate ϵ 0.1

action distribution categorical with 5 bins

Table 2: Parameters used for training the Policy Gradient on the High-Fidelity task

A.3 Baseline Adaptation

As mentioned in the paper, we adapted three baseline approaches from the
literature: Assymetric Self-Play [3], Domain Adaptation for RL [1] and Teacher-
Student Curriculum learning [2].

A.3.1 Assymetric Self-Play

We adapted the assymetric self-play approach proposed by [3] to our problem of
crafting a stone-axe. Alice, the goal-proposing policy, proposes a goal for Bob,
whose goal is to reach the goal proposed by Alice. We used the approach in
Repeat mode, where Bob repeats the task instead of reversing it, and tries to
reach the goal proposed by Alice.

The maximum number of steps for Alice and Bob were set to 600, equal to
the steps allowed for Automated Curriculum approach. We tuned the hyper-
parameters through experimentation for our task, using a heuristic grid search.
The parameters we used were: Self-Play percentage: 10%, Self-play reward scale
γ: 0.01 and the self-play mode at repeat.

According to [3], Alice’s reward fuction is given by rA = max(0, tB − tA)
where tB is the time taken for Bob to reach the goal state proposed by Alice,
whereas tA is the time taken by Alice to propose a goal (execute ‘stop’ action).
In the target task, the goal is to craft a stone axe. We see that Alice’s rewards
are sparse, and for Alice to keep receiving positive rewards, it needs to propose
a goal that is just difficult for Bob to repeat. In our task, the large goal space
makes it difficult for Alice to propose a task that is just difficult for Bob to
repeat, making it difficult to optimize the curriculum according to the goals
proposed by Alice, taking it longer to obtain a curriculum.

One difficulty is that the time (in interactions) spent by Alice in proposing

3

a task is a sunk cost, and requires tuning the self-play percentage parameter
to not increase this added cost. The self-play approach does help Bob explore
the space, and is responsible for the jumpstart Bob achieves initially in the
target task, evident from the baseline comparison learning curves. From our
experiments, we observed that the exploration helped Bob in navigation, but
was not effective in performing the sequential actions required for the target
task. In the presence of Fire in the Crafter-TurtleBot environment, Bob’s self-
play episodes helped the agent realize the negative reward associated with the
fire object, and provided quicker learning in the target task.

A.3.2 Domain Adaptation for RL

We adapted the approach given in [1] for domain adaptation from the low-
fidelity gridworld environment (source) to the high-fidelity Crafter-TurtleBot
environment (target).

The overall approach used for the transfer is highlighted in Algorithm 1

Algorithm 1 DA LF to HF(MLF ,MHF)

Output: HF target task policy: πHF
f

Algorithm:

1: πLF
i ←− ∅ ▷ Initialize the LF policy

2: πLF
f ←− Learn(MLF , πLF

i) ▷ Learn the LF task
3: for epoch ∈ total epoch do
4: sHF []←− ∅ ▷ Initialize target (HF) observations
5: for batch ∈ total batch do
6: sHF [batch]←− SMHF ▷ Sample HF observations
7: Auto Encoder(sHF

t [batch]) ▷ Train Auto encoder-decoder network
8: for k ∈ N do
9: xLF ∼ Sample LF(MLF , πLF

f) ▷ Sample LF encoder latent output
10: xHF ∼ Sample HF(MHF , πHF

i) ▷ Sample HF encoder latent output
11: θD = Train Discriminator(θD, θG,Discriminator model)

12: yHF ∼ Sample Observations(MHF , πHF
i) ▷ Sample HF observations

13: θG = Train Generator(θD, θG,Generator model)

14: πHF
f = Learn(MHF , θG, π

HF
i)

15: return πHF
U

The approach we used for transfer from the LF to the HF is summarized
below:

1. We trained the agent to accomplish the LF target task, to learn the LF
target policy πLF

f .

2. Train autoencoder on HF observations.

3. Generate LF and HF encoder output, representing the embedding space.

4. Train the Adversarial AutoEncoder.

5. Using the Generator model, train the HF policy

4

Given the semantic similarity between two separate environments, domain
adaptation helps in providing a performance boost, over the random initial-
ized neural networks. In our implementation, we observed that the increased
complexity of the neural network, required more training time for the domain
adaptation approach, and hence did not outperform the learning from scratch
baseline approach initally in presence of fire. In both the HF environments (with
and without fire), we observed the domain adaptation converging to a higher
reward compared to the learning from scratch approach. We tuned the hyper-
parameters by performing a heuristic grid search. In some cases, the default
hyperparameters performed worse than learning from scratch.

A.3.3 Teacher-Student Curriculum Learning

The proposed teacher-student curriculum learning assumes a teacher optmizing
the sequence of the tasks in the curriculum for the student. The teacher pro-
poses those tasks for which the student shows the highest potential in learning,
i.e. the tasks for which the student learns the quickest. The ability of a student
to learn a task is given by its slope of the curve of plotted reward function.
The steeper the slope, the quicker the student is able to learn the task. One
limitation of this approach is that it assumes the source tasks of the curriculum
are defined. This is difficult in settings where the parameters of the task are
continuous. In order to adapt this baseline approach for our method, we had
to discretize the continuous parameters of our task to satisfy the constraints of
the baseline approach. We used the same policy gradient network for teacher-
student curriculum learning approach as we did for the autonomous curriculum
transfer. We initialized 9 source tasks and one target task, with varying param-
eters for each source task. The performance of the agent in the final target task
is plotted. We followed the same reward shaping for the tasks in the curriculum
as for the source tasks of the automated curriculum transfer approach.

In teacher-student curriculum learning, the sunk cost of the algorithm is the
interactions in the source task. The sunk cost is very high when the interactions
are costly, as in our high fidelity setup. This contributes to the high requirement
of compuational resources.

5

A.4 PPO and DQN implementation

Parameter Value

discount factor γ 0.99

learning rate α 1×10−3

optimizer Adam

PPO clipping parameter 0.2

Generalized Advantage Estimation
λ

0.95

Entropy regularization coefficient 0.001

action distribution categorical with 5 bins

Table 3: Parameters used for training the Proximal policy optimization on the High-
Fidelity task

Parameter Value

discount factor γ 0.995

learning rate α 1×10−3

optimizer Adam

batch size 256

action distribution categorical with 5 bins

Table 4: Parameters used for training the Deep Q-Learning on the High-Fidelity task

A.5 Learning curves for the reward

To understand how well a policy learned, i.e. in an episode, how many timesteps
will a policy take to successfully complete the episode, we take a look at the
reward graphs. Fig 2 depicts the learning curves for the automated curriculum
transfer approach on the baseline approaches. It can be observed that the auto-
mated curriculum transfer approach outperforms all other baseline approaches
in terms of the average reward achieved.

6

(a) LF - gridworld (b) HF - Crafter-Turtlebot (c) Crafter-Turtlebot Base-
lines

(d) LF w/ Fire - gridworld (e) HF w/ Fire - Crafter-
Turtlebot

(f) Crafter-Turtlebot w/ Fire
- Baselines

Figure 2: Learning Curves for low fidelity (LF) and high fidelity (HF) environments
with and without Fire.

A.6 Set of mapping functions F
As discussed earlier, the goal of this paper is to find a curriculum cU

TLF in the
LF environment that can be transferred through a set of mapping functions
F := {f1, f2, . . . , fn} to attain the curriculum in the HF environment cU

THF . A
mapping function maps the parametric variables in the LF environment (PLF)
to the parametric variables in the HF environment (PHF). We have character-
ized the mapping as an affine transformation given by:

PHF = A⊙ PLF +B

where A = [a1, . . . , an]
T ∈ Rn and B = [b1, . . . , bn]

T ∈ Rn denote linear map-
ping and translation vector and ⊙ is the Hadamard product.

The values for the liner mapping vector A and B are chosen heuristically, as
to have a mapping that is feasible in the LF environment, i.e. if the final goal
task in the HF environment requires existence of 2 trees and 1 rock, the mapping
should ensure that the goal task in the LF is attainable with the generated
mapping. Hence, in our experiments, the mapping for the number of trees, rocks
and crafting table in the HF environment follows a one-to-one correspondence
with the said parameters in the LF environment. The parameters defining the
size of the map in the HF environment are mapped such that the task parameters
for tree, rock and crafting table are able to accommodate in the mapped LF
map size.

7

References

[1] Thomas Carr, Maria Chli, and George Vogiatzis. “Domain Adaptation for
Reinforcement Learning on the Atari”. In: Proceedings of the 18th Interna-
tional Conference on Autonomous Agents and MultiAgent Systems. 2019,
pp. 1859–1861.

[2] Tambet Matiisen et al. “Teacher-Student Curriculum Learning”. In: IEEE
Trans. Neural Networks Learn. Syst. 31.9 (2020), pp. 3732–3740. doi: 10.
1109/TNNLS.2019.2934906. url: https://doi.org/10.1109/TNNLS.
2019.2934906.

[3] Sainbayar Sukhbaatar et al. “Intrinsic Motivation and Automatic Curric-
ula via Asymmetric Self-Play”. In: International Conference on Learning
Representations. 2018.

8

https://doi.org/10.1109/TNNLS.2019.2934906
https://doi.org/10.1109/TNNLS.2019.2934906
https://doi.org/10.1109/TNNLS.2019.2934906
https://doi.org/10.1109/TNNLS.2019.2934906

	Abstract
	1 Introduction
	2 Related Work
	3 Theoretical Framework
	3.1 Markov Decision Processes
	3.2 Curriculum Learning (CL)
	3.3 Problem Formulation
	3.4 Running Example
	3.5 Curriculum Transfer Approach
	3.6 Handcrafted and Automated Curriculum Transfer Generation

	4 Experimental Results
	4.1 Curriculum Generation in High Fidelity
	4.2 Results with Added Complexity
	4.3 Results with Different RL Algorithms
	4.4 Noisy Mappings
	4.5 Runtime Comparison

	5 Transfer to a Physical Robot
	6 Conclusion and Future Work
	Acknowledgments
	References
	3e63a1b7-90c6-4a10-ac81-85b2a6ef90d1.pdf
	Appendix
	Curriculum example
	Trends in curriculum optimization

	Policy gradient implementation details
	Baseline Adaptation
	Assymetric Self-Play
	Domain Adaptation for RL
	Teacher-Student Curriculum Learning

	PPO and DQN implementation
	Learning curves for the reward
	Set of mapping functions F

