
Automaton-Guided Dynamic Task Sampling for Reinforcement Learning Agents

Anonymous submission

Abstract

Reinforcement Learning (RL) has made significant strides
in enabling artificial agents to learn diverse behaviors. How-
ever, learning an effective policy often requires a large num-
ber of environment interactions. To mitigate sample complex-
ity issues, recent approaches have used high-level task spec-
ifications, such as Linear Temporal Logic (LTLf) formulas
or Reward Machines (RM), to guide the learning progress
of the agent. In this work, we propose a novel approach,
called Automaton-Guided Dynamic Task Sampling (AGTS),
that learns a set of RL policies to guide an agent from an
initial state to a goal state based on a high-level LTLf task
objective, while minimizing the number of environmental in-
teractions. Unlike previous work, AGTS does not assume in-
formation about the environment dynamics or the Reward
Machine, and dynamically samples promising tasks that lead
to successful goal policies. We evaluate AGTS on a grid-
world and show that it achieves improved time-to-threshold
performance on complex sequential decision-making prob-
lems compared to state-of-the-art RM and Automaton-guided
RL baselines, such as Q-Learning for Reward Machines
and Compositional RL from logical Specifications (DIRL).
Moreover, we demonstrate that our method outperforms RM
and Automaton-guided RL baselines in terms of sample-
efficiency, both in a partially observable robotic task and in
a continuous control robotic manipulation task.

1 Introduction
Agents are now capable of learning optimal control be-
havior for a broad spectrum of tasks, ranging from
Atari games (Gao and Wu 2021) to robotic manipulation
tasks (Nguyen and La 2019), thanks to recent advancements
in Reinforcement Learning (RL). Despite the progress made
in RL, learning an optimal task policy using model-free RL
techniques still suffers from sample-complexity issues be-
cause of sparse reward settings and unknown transition dy-
namics (Lattimore, Hutter, and Sunehag 2013). These chal-
lenges further intensify in long-horizon settings, where the
agent needs to perform a series of correct sequential deci-
sions to achieve the goal. To alleviate this issue in compli-
cated tasks, several lines of work have explored represent-
ing the goal using an intricately shaped reward function that
guides the agent toward the goal (Grzes 2017). However,
generating such a reward function requires the human engi-
neer to assign ‘importance’ weights to various aspects of the

task, which is time consuming and assumes knowledge on
which aspects of the task are important. Poorly engineered
reward functions can lead to local optima, where the agent
learns to satisfy only a subset of goals and ignores the rest.

Recent research has investigated representing the goal
using high-level specification languages, such as finite-
trace Linear Temporal Logic (LTLf) (De Giacomo and
Vardi 2013) or Reward Machines (RM) (Icarte et al. 2022)
that allow defining the goal using a graphical representa-
tion of sub-tasks. The high-level objective is known be-
fore commencing the task, and the graphical representa-
tion allows the agent to achieve easier sub-goals initially,
and build upon them to achieve complex goals. RM ap-
proaches still require human guidance in defining the re-
ward structure of the machine, which is dependent on know-
ing how much reward should be assigned for each sub-goal.
In contrast, our method does not require access to the re-
ward structure. Compositional RL from Logical Specifica-
tions (DIRL) (Jothimurugan et al. 2021) mitigates this is-
sue by using Dijkstra’s algorithm to reach those nodes in
the graph that yield the highest success rate, encouraging
the agent to learn policies for satisfying all outgoing edge
propositions from such nodes. However, this approach re-
quires the agent to explore a sub-task for a manually speci-
fied number of interactions, which requires knowledge about
the environment. DIRL ends up spending a lot of interac-
tions learning unproductive policies as some sub-tasks can
be unpromising, yet the agent has to spend the defined num-
ber of interactions learning a policy for the sub-task. Unlike
DIRL, our approach finds unpromising tasks and discards
them, saving costly interactions and converging to a success-
ful policy faster. Minimizing the overall number of interac-
tions while learning a set of successful policies is non-trivial
as this problem is equivalent to finding the shortest path in a
graph whose edge weights are unknown a priori (Szepesvári
2004). In our case, the edge weight denotes the total number
of environmental interactions required by the agent to learn
a successful policy for a sub-task, in which the agent must
induce a visit to a state where certain properties hold true.
Additionally, we can only sample interactions for a sub-task
if we have a policy that can reach the edge’s source node
from the start node of the graph.

To address the above challenges, we present Automaton-
Guided Dynamic Task Sampling (AGTS). We begin with

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

(a) Gridworld domain

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

(b) LTLf formula and its corresponding DFA.
The DFA excludes all self-loops and transi-
tions to a sink state.

0 2 4 6
Timesteps 1e6

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s R

at
e

(c) Learning curve

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

Figure 1: (a) Gridworld domain and descriptors. The agent (red triangle) needs to collect one of the keys and open the door to
reach the goal; (b) The LTLf formula for the task and its DFA. The operators G and F denote always and eventually respectively.
Formulas l, k1, k2, d and g correspond to Lava, Key1, Key2, Door and Goal respectively; (c) Learning curves for individual
sub-tasks (averaged over 10 trials) generated using AGTS. The path chosen by AGTS is highlighted in red in Fig.1(b)

a high-level objective represented using finite-trace Linear
Temporal Logic (LTLf) formulas which can equivalently be
represented using Deterministic Finite Automaton (DFA).
The DFA structure encodes memory, helping the agent un-
derstand what events of interest have occurred in the past,
and which events must occur to reach the accepting states.
Our key insight is to learn policies for sub-tasks defined us-
ing the edges of the DFA. Specifically, a transition from a
state q to p occurs in a DFA when the propositional logic for-
mula labeling the edge (q, p) evaluates to true. We use the set
of propositional logic formulas labeling the outgoing edges
from a given node in DFA to define sub-tasks. The trajectory
induced by a successful RL policy for the sub-task enables
the DFA’s state to transition from the source node to the
destination node of the edge defining the sub-task. We em-
ploy an adaptive Teacher-Student learning strategy, where,
(1) the Teacher agent uses its high-level policy along with
exploration techniques to actively sample a sub-task for the
Student agent to learn. The high-level policy considers the
DFA representation and the Student agent’s expected perfor-
mance on all the sub-tasks, aiming to satisfy the high-level
objective in the fewest number of interactions, and (2) the
Student agent interacts with the environment for a few steps
(much fewer than the interactions required to learn a suc-
cessful policy for the sub-task) while updating its low-level
RL policy for the sampled sub-task. The Teacher observes
the Student’s performance on these interactions and updates
its high-level policy. Steps (1) and (2) continue alternately
until the Student agent learns a set of successful policies that
guide the agent to reach a goal state.

As an example, let us look at the environment shown in
Fig. 1a. The goal for the agent is to collect any of the two
Keys, followed by opening the Door and then reaching the
Goal while avoiding the Lava at all times. The task’s high-
level objective is represented using the LTLf formula and its
corresponding DFA representation U1 in Fig. 1b. The DFA
does not contain information about the environment config-

1Cycles and sink nodes are pruned for ease of understanding

uration, such as: the optimal number of interactions required
to reach Door from Key1 are much higher compared to the
interactions required to reach Door from Key2, making the
Key1 to Door trajectory sub-optimal. Hence, it is crucial to
prevent any additional interactions the agent spends in learn-
ing a policy for the sub-task defined by the edge q1

¬l∧d−−−→ q3

as the path q0
¬l∧k1−−−−→ q1

¬l∧d−−−→ q3
¬l∧g−−−→ q4 will always

be sub-optimal. Our proposed approach, AGTS begins with
the aim of learning two distinct policies π1 for the task of
visiting Key1 and π2 for the task of visiting Key2, both
avoiding Lava. The Teacher initially samples evenly from
these two sub-tasks but later biases its sampling toward the
sub-task on which the Student agent shows higher learning
potential. Once the agent learns a successful policy for one
of the sub-tasks (let’s say the learned policy π∗

1 correspond-

ing to the sub-task defined by the transition q0
¬l∧k1−−−−→ q1),

the Teacher does not sample that task anymore, identifies the
next task(s) in the DFA representation, and appends them to
the set of tasks it is currently sampling (in this case, the only
next task is: q1

¬l∧d−−−→ q3). Since the agent only has access to
the state distribution over q0, it follows the trajectory given
by π∗

1 to reach a state that lies in the set of states where the
proposition ¬Lava ∧ Key1 holds true before commencing
its learning for the policy (π3) for q1

¬l∧d−−−→ q3. If the agent
learns the policies π∗

2 for satisfying the sub-task defined by

q0
¬l∧k2−−−−→ q2 and π∗

4 for q2
¬l∧d−−−→ q3 before learning π3, it

effectively has a set of policies to reach the node q3. Thus,
the Teacher will now only sample the next task in the DFA

representation q3
¬l∧g−−−→ q4, as learning policies for paths

that reach q3 are effectively redundant. This process con-
tinues iteratively until the agent learns a set of policies that
reach the goal node (q4) from the start node (q0). The learn-
ing curves in Fig. 1c empirically validate the running exam-
ple. As evident from the learning curves, the agent learns

policies for the path q0
¬l∧k2−−−−→ q2

¬l∧d−−−→ q3
¬l∧g−−−→ q4 that

produce trajectories to reach the goal node q4 from the initial

node q0, without excessively wasting interactions on the un-
promising sub-task q1

¬l∧d−−−→ q3. The dashed lines in Fig. 1c
signify the interactions at which a task policy converged.

The dynamic task sampling strategy promotes AGTS
to achieve sample-efficient learning on complex tempo-
rally extended tasks by identifying unpromising tasks and
discarding them, saving costly interactions. Our empir-
ical results show that AGTS reduces environmental in-
teractions by orders of magnitude compared to state-
of-the-art Specifications-Guided RL Baseline DIRL, Re-
ward Machine-based baselines QRM (Icarte et al. 2018),
GSRS (Camacho et al. 2018), and curriculum learning base-
line TSCL (Matiisen et al. 2020). We also evaluate AGTSct,
a modified algorithm that further improves sample efficiency
by continuing exploration on a new sub-task once a goal
state for a sub-task is reached. We perform evaluation on two
robotic navigation and manipulation tasks and demonstrate
that AGTS reduces the number of interactions by orders-
of-magnitude when compared to state-of-the-art automaton-
guided RL baselines.

2 Related Work
Automaton-guided RL approaches utilize temporal logic-
based language specifications to define tasks (Toro Icarte
et al. 2018; Bozkurt et al. 2020; Xu and Topcu 2019; Alur
et al. 2022; De Giacomo et al. 2019). Separating policies
for task sub-goals aids in abstracting knowledge that can be
utilized in novel tasks (Icarte et al. 2018), without reliance
on a dense reward function. Another technique is to shape
the reward in proportion to the distance from the accepting
node in the automaton (Camacho et al. 2018); however, this
often leads to suboptimal reward settings. Augmenting the
reward function with Monte Carlo Tree Search helps mit-
igate this issue (Velasquez et al. 2021). This approach re-
quires the ability to plan-ahead in the environment, which is
not always feasible. Automaton-guided RL has been used to
aid navigational exploration for robotic domains (Cai et al.
2023; Li, Vasile, and Belta 2017) and for multi-agent set-
tings (Hammond et al. 2021). Generating a curriculum given
the high-level objective (Shukla et al. 2023) requires ac-
cess to the Object-Oriented MDP (Diuk, Cohen, and Littman
2008), which cannot be obtained if environment details are
not known in advance. DIRL interleaves high-level planning
with RL to learn a policy for each edge, which overcomes
challenges arising from poor representations (Jothimurugan
et al. 2021). This approach becomes inefficient in terms of
number of interactions, as it requires the agent to act for a
predetermined number of interactions, even if learning the
task does not show any promise. Unlike previous works, in
this paper, we propose an automaton-guided dynamic task
sampling approach that does not require access to the envi-
ronment dynamics or the Reward Machine, and efficiently
samples tasks that show promise toward the high-level ob-
jective, saving interactions on unpromising tasks.

Teacher-Student algorithms (Matiisen et al. 2020) have
been previously studied in Curriculum Learning litera-
ture (Narvekar et al. 2020; Shukla et al. 2022) and in the
Intrinsic Motivation literature (Oudeyer and Kaplan 2009).

The idea is to have the Teacher propose those tasks to
Student on which the Student shows most promise. This
strategy helps Student learn simpler tasks first, transfer-
ring its knowledge to complex tasks. The technique re-
duces the overall number of interactions necessary to learn
a successful policy. These approaches tend to optimize a
curriculum to learn a single policy, which does not scale
well to temporally-extended tasks. Instead, we propose an
Automaton-guided Teacher-Student learning strategy that
learns a policies for promising automaton transitions, pro-
moting sample-efficient training compared to the baselines.

3 Theoretical Framework
Episodic MDP. An episodic labeled Markov Decision Pro-
cess (MDP) M is a tuple (S,A,V, R,S0, γ,K,AP,L),
where S is the set of states,A is the set of actions, V(s′|s, a)
denotes the transition probability of reaching state s′ ∈ S
from s ∈ S using action a ∈ A, R : S × A× S → R is the
reward function, S0 is the initial state distribution, γ ∈ [0, 1]
is the discount factor, K is the maximum number of interac-
tions in any episode, AP is a set of atomic propositions, and
L : S → 2AP is a labeling function that maps a state s ∈ S
to a subset of atomic propositions that are true in that state.

In every interaction, the agent observes the current state
s and selects an action a according to its policy function
π(a|s, θ) with parameters θ. The MDP transitions to a new
state s′ ∈ S with probability V(s′ | s, a). The agent’s goal
is to learn an optimal policy π∗ that maximizes the dis-
counted return G0 =

∑K
k=0γ

kR(s′k, ak, sk) until the end
of the episode, which occurs after at-most K interactions.

High-level Specification. We express the high-level spec-
ification for a complex, temporally extended task finite-trace
Linear Temporal Logic (LTLf) formulas (De Giacomo and
Vardi 2013). LTLf succinctly expresses intricate temporal
tasks such as safety, reachability, persistence, recurrence or
a combination of these. LTLf formulas are constructed in-
ductively from a set of atomic propositions AP , using the
operations p, ¬ϕ, ϕ1 ∨ ϕ2, Xϕ, Gϕ, Fϕ, and ϕ1Uϕ2. Here,
p ∈ AP , and ϕ, ϕ1, and ϕ2 are LTLf formulas. The negation
operator is represented by ¬, the disjunction operator is rep-
resented by ∨, and the operators X, G, F, and U correspond
to Next, Always, Eventually, and Until, respectively.

The language of any LTLf formula can be expressed
equivalently by a DFA (De Giacomo and Vardi 2013). A
DFA is a tuple U = (Q, q0,Σ, δ, F), where Q is the set of
nodes, q0 ∈ Q is an initial node, Σ = 2AP is an alphabet de-
fined over a set of atomic propositions AP , δ : Q×Σ→ Q
is a deterministic transition function, and F ⊆ Q is the set of
accepting nodes. A path ζ = q0q1 . . . qn in a DFA is a finite-
length sequence of nodes such that, for any i = 0 . . . n− 1,
we have qi+1 = δ(qi, σi). A path ζ is said to be accepting if
its last node is accepting, i.e., qn ∈ F .

Every path ρ = s0s1 . . . sn in MDP induces a word w =
L(s0)L(s1) . . . L(sn) ∈ Σ∗. The word w induces a path ζ =
q0q1 . . . qn in the DFA. A path ρ in MDP satisfies an LTLf

formula φ if and only if the last state qn in the path ζ induced
by ρ is an accepting state in the DFA corresponding to φ.

Problem Formulation. Given an MDP M with unknown

transition dynamics and an LTLf formula φ representing the
high-level objective of the agent, let U be the DFA repre-
senting the language of φ. Let Paths(q,X) be the set of
all finite paths originating in q and terminating at a node
in X ⊆ Q. The aim of this work is to learn a set of policies
π∗
i , i = 0, . . . , n− 1, with the following three properties: (i)

Following π∗
0 results in a path in MDP that induces a transi-

tion from q0 to some state q1 ∈ Q in the DFA, following π∗
1

results in a path in MDP that induces a transition from q1 to
some state q2 ∈ Q in the DFA, and so on. (ii) The resulting
path q0q1 . . . qn in the DFA terminates at an accepting state,
i.e., qn ∈ F , with probability greater than a given threshold,
η ∈ (0, 1). We intend to minimize the number of environ-
mental interactions required to learn these policies.

4 Methodology

Given the DFA U representing the language of φ, we de-
fine a set of sub-tasks based on the edges of the DFA. Intu-
itively, given any MDP state s ∈ S and a DFA node q ∈ Q, a
sub-task defined by an edge from node q to p ∈ Q defines a
reach-avoid objective for the agent represented by the LTLf

formula,

Task(q, p) = F(ϕ(q,p)) ∧G

 ∧
r∈Succ(q),r ̸=p

¬ϕ(q,r)

 ,

where ϕ(q,p) is the propositional formula labeling the edge
from q to p in the DFA and Succ(q) is the set of succes-
sors of node q in DFA. For example, in Fig. 1b, the propo-
sitional logic formula labeling the edge from q0 to q1 is
ϕ(q0,q1) = ¬l ∧ k1. When e = (q, p), we sometimes write
Task(e) instead of Task(q, p) for notational convenience.

Each sub-task Task(q, p) defines a problem to learn a pol-
icy π∗

(q,p) such that, given any MDP state s0 ∈ S, following
π∗
(q,p) results in a path s0s1 . . . sn in MDP that induces the

path qq . . . qp in the DFA. That is, the DFA state remains at
q until it transitions to p. While constructing the set of sub-
tasks, we omit the self-loops and the transitions that lead to
a ‘sink’ state (from which final states are unreachable).

Given the MDP M with unknown transition dynamics and
the LTLf objective, φ, we first translate φ to its correspond-
ing Deterministic Finite Automaton (DFA) representation
U = (Q, q0,Σ, δ, F). Next, we define the set of sub-tasks.
For this, we consider the edges that lie on some path from
q0 to some state in F . This is because any path that does not
visit F must lead to a sink state from which the objective
cannot be satisfied. The set of such edges is identified using
breadth-first-search (Moore 1959).

The algorithm for AGTS is described in Algo. 1. We begin
by initializing the following quantities (lines 2-4): (1) Set of:
Active Tasks AT, Learned Tasks LT, Discarded Tasks DT;
(2) A Dictionary P that maps a sub-task Task(e) of the DFA
U to a policy πe; (3) A Dictionary that represents the Teacher
Q-Values Q by mapping a sub-task Task(e) to a numerical
value associated with that sub-task.

Firstly, we convert U into an Adjacency Matrix X (line
6), and find the set of all the outgoing edges Eq0 ⊆ E

from the initial node q0 (line 7). Satisfying the edge’s for-
mula ϕ(q0,q1) ∈ Eq0 represent a reachability sub-task M ′

where each goal state s ∈ SM ′

f of M ′ satisfy the condition
ϕ(q0,q1) ⊆ L(s). The agent receives a positive reward for
satisfying ϕ(q0,q1) and a small negative reward at all other
time steps. The state space, the action space and the transi-
tion dynamics of M ′ are equivalent to M . To complete the
sub-task, the agent must learn a policy π∗

(q,p) that ensures
a visit from q to p with probability greater than a predeter-
mined threshold (η). Moreover, the policy must also avoid
triggering unintended transitions in the DFA. For instance,
while picking up Key1, the policy must not inadvertently
pick up Key2.

We set the Teacher Q-Values for all the sub-tasks corre-
sponding to edges in AT (i.e., Eq0) to zero (line 8). We for-
malize the Teacher’s goal of choosing the most promising
task as a Partially Observable MDP (Kaelbling, Littman,
and Cassandra 1998), where the Teacher does not have ac-
cess to the entire Student agent state but only to the Student
agent’s performance on a task (e.g. success rate or average
returns), and as an action, chooses a task Task(e) ∈ AT the
Student agent should train on next. In this POMDP setting,
each Teacher action (a sub-task) has an Q-Value associated
with it. Intuitively, higher Q-Values correspond to tasks on
which the Student agent is more successful, and the Teacher
should sample such tasks at a higher frequency to satisfy φ
(reach a goal node) in fewest overall interactions.

(A) Given the Teacher Q-Values, we sample a sub-task
Task(e) ∈ AT using the ϵ−greedy exploration strategy (line
10), and (B) The Student agent trains on task Task(e) using
the policy P[e] for ‘x’ interactions (line 11). In one Teacher
timestep, the Student trains for x environmental interactions.
Here, x << total number of environmental interactions re-
quired by the agent to learn a successful policy for Task(e),
since the aim is to keep switching to a task that shows high-
est promise. (C) The Teacher observes the Student agent’s
average return gt on these x interactions, and updates its Q-
Value for Task(e) (line 12):

Q[e]← α(gt) + (1− α)Q[e] (1)

where α is the Teacher learning rate, gt is the average Stu-
dent agent return on Task(e) at the Teacher timestep t.
As the learning advances, gt increases as t increases, and
hence we use a constant parameter α to tackle the non-
stationary problem of a moving return distribution. Sev-
eral other algorithms could be used for the Teacher strategy
(e.g., UCB (Agrawal and Goyal 2012), Thomspson Sam-
pling (Auer, Cesa-Bianchi, and Fischer 2002)). Steps (A),
(B) and (C) continue successively until the policy for any
Task(e) ∈AT task converges.

We define a policy for Task(q, p) to be converged (line
13) if a trajectory ω produced by the policy triggers the tran-
sition with probability Prω∈Ω[ω satisfies Task(q, p)] ≥ η
and ∆(gt, gt−1) < τ where η is the expected performance
and τ is a small numerical value. Intuitively, a converged
policy attains an average success rate ≥ η and has not im-
proved further by maintaining constant average returns. Like
all other RM and automaton-based approaches, we assume

access to the labeling function L to examine if the trajectory
ω satisfies the formula ϕ(q, p) by checking if the final en-
vironmental state s of the trajectory satisfies the condition
ϕ(q, p) ⊆ L(s). The sub-goal regions need not be disjoint,
i.e., the same state s can satisfy propositions for multiple
DFA nodes. Once a policy for the Task(q, p) converges, we
append Task(q, p) to the set of Learned Tasks LT and re-
move it from the set of Active Tasks AT (line 14). In order to
ensure that the learned task does not get sampled any further,
we set the Teacher Q-value for this sub-task to−∞ (line 15).
Once we have a successful policy for the Task(q, p) (the
transition q

σ−→ p), we determine the sub-tasks that can be
discarded (line 16). We find the sub-tasks correspoding to
edges that: (1) lie before p in a path from q0 to any q ∈ F ,
and, (2) do not lie in a path to q ∈ F that does not contain p.
Intuitively, if we already have a set of policies that can gen-
erate a successful trajectory to reach the node p, we do not
need to learn policies for sub-tasks that ultimately lead only
to p. We add all such sub-tasks to the set of Discarded Tasks
DT (line 17), and set the Teacher Q-values for all the dis-
carded tasks to−∞ to prevent them from being sampled for
the Student learning agent (line 18). As an extension, in the
limit, an optimal policy can be found by not completely dis-
carding these sub-tasks, but rather biasing away from them
so that in the limit they would still be explored.

Subsequently, we determine the next set of tasks EAT in
the DFA to add to the AT set (line 19). This is calculated
by identifying sub-tasks corresponding to all the outgoing
edges from p. Since the edge eq,p corresponds to the transi-
tion q

σ−→ p, we have a successful policy that can produce
a trajectory that ends in a state where the propositions for
p hold true, and EAT corresponds to X [p]\DT (‘\’ refers to
set-minus) i.e., sub-tasks corresponding to all the outgoing
edges from p that do not lie in the DT set.

Once we identify EAT , we set the Teacher Q-values for
all Task(e) ∈ EAT to 0 so that the Teacher will sample
these tasks (line 23). We consider an episodic setting where
the episode starts from a state s ∼ S0 where the proposi-
tions for q0 hold true, and if the current sampled sub-task
is Task(p, r), the agent follows a trajectory using corre-
sponding learned policies from Π∗ to reach a state where
the propositions for p hold true, and then attempts learning
a separate policy for Task(p, r).

The above steps (lines 9-26) go on iteratively until EAT is
an empty set. This indicates we have no further tasks to add
to our sampling strategy, and we have reached a node q ∈ F .
Thus, we break from the while loop (line 21) and return
the set of learned policies Π∗, and edge-policy dictionary P
(line 27). From P and Π∗, we get an ordered list of policies
Π∗

list = [π(q1,q2), π(q2,q3), . . . , π(qk−1,qk)] such that sequen-
tially following π ∈ Π∗

list generates trajectories that satisfy
the LTLf objective φ 2.

Guarantee: Given the ordered list of policies Π∗
list,

we can generate a trajectory ω in the task M with
Prω∈Ω[ω satisfies φ] ≥ η (Details in Appendix B).

2Link to code to be provided after review

Algorithm 1: AGTS (U ,M, η, x)
Output: Set of learned policies : Π∗, Edge-Policy
Dictionary P

1: Placeholder Initialization:
2: Sets of: Active Tasks (AT)← ∅;

Learned Tasks (LT)← ∅; Discarded Tasks (DT)← ∅
3: Edge-Policy Dictionary P : Task(e)→ π
4: Teacher Q-Value Dictionary: Q : Task(e)→ −∞
5: Algorithm:
6: X ← Adjacency Matrix (U)
7: AT← AT ∪ {X [q0]}
8: ∀ Task(e) ∈ AT : Q[e] = 0
9: while True do

10: e← Sample(Q)
11: P[e], g ← Learn(M,U , e, x,P)
12: Update Teacher(Q, e, g)
13: if Convergence(Q, e, g, η) then
14: Π∗ ← Π∗ ∪ P[e] ; LT← LT ∪{Task(e)} ;

AT← AT \{Task(e)}
15: Q[e] = −∞
16: EDT ← Discarded Tasks(X , e)
17: DT← DT ∪ EDT

18: ∀ Task(e) ∈ EDT : Q[e] = −∞
19: EAT ← Next Tasks (X , e, DT)
20: if |EAT | = 0 then
21: break
22: end if
23: ∀ Task(e) ∈ EAT : Q[e] = 0
24: AT← AT ∪ EAT

25: end if
26: end while
27: return Π∗,P

5 Experimental Results
We aim to answer the following questions: (Q1) Does AGTS
yield sample efficient learning compared to state-of-the-art
baselines? (Q2) After reaching a sub-task goal state, can we
sample a new sub-task to continue training and get better
sample efficiency? (Q3) Does AGTS yield sample efficient
learning for complex robotic tasks with partially observable
or continuous control settings?

5.1 AGTS - Gridworld Domain
To answer (Q1), we evaluated AGTS on a Mini-

grid (Chevalier-Boisvert, Willems, and Pal 2018) inspired
domain with the LTLf objective:

φgridworld
f := G ¬Lava ∧ F((Key1|Key2)∧

F(Door & F(Goal))) (2)

where Key1,Key2, Door,Goal are the atomic propo-
sitions. The environment and the DFA representation are
given in Fig. 1. Essentially, the agent needs to collect any
of the Keys before heading to the Door. After toggling the
Door open, the agent needs to visit the grid with the Goal.
At all times, the agent needs to avoid the Lava object. We as-
sume an episodic setting where an episode ends if the agent

Approach # Interactions
(Mean ± SD)

Success Rate
(Mean ± SD)

AGTSct (5.75±0.38)×106 0.96± 0.02
AGTS (6.12±0.25)×106 0.95± 0.01
DIRLc (7.97±0.46)×106 0.95± 0.03
DIRL (9.62±0.42)×106 0.94± 0.01
QRM 5× 107 0.05± 0.04
GSRS 5× 107 0± 0
TSCL 5× 107 0± 0
LFS 5× 107 0± 0

Table 1: Table comparing #interactions & success rate.
AGTS (highlighted) outperfomed all baselines

0.50 0.75 1.00 1.25
Timesteps 1e7

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

ate

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

Figure 2: Averaged over 10 trials: Learning curves for ap-
proaches whose policies successfully converged.

touches the Lava object, reaches the Goal or exhausts the
number of allocated interactions.

This is a complex sequential decision making problem as
the agent needs to perform a series of correct actions to sat-
isfy φgridworld

f . In this environment, the agent has access to
three navigation actions: move forward, rotate left and rotate
right. The agent can also perfom: pick-up action, which adds
the Key to the agent’s inventory if it is facing the Key, drop
places the Key in the next grid if Key is present in the in-
ventory, and, toggle that toggles the Door (closed↔ open)
only if the agent is holding the Key. For this environment,
we assume a fully-observable setting where the environmen-
tal state is a low-level encoding of the image. For each cell
in the grid, the low-level encoding returns an integer that de-
scribes the item occupying the grid, along with additional in-
formation, if any (e.g., the Door state can be open or closed).

For the RL pipeline, we use PPO (Schulman et al. 2017),
which works for discrete and continuous action spaces. We
consider a standard actor-critic architecture with 2 convo-
lutional layers followed by 2 fully connected layers. For
AGTS, the reward function is sparse. The agent gets a re-
ward of (1−0.9 (interactions taken)

(interactions allocated)) if it achieves the goal
in the sub-task, and a reward of 0 otherwise. For individual
tasks, interactions allocated = 100. The agent does not
receive any negative rewards for hitting the Lava.

We compare our AGTS method against six baseline ap-
proaches: learning from scratch (LFS), Reward Machine-
based (RM) baselines: GSRS (Camacho et al. 2018),
QRM (Icarte et al. 2018); and Compositional RL from
Logical Specifications (DIRL) (Jothimurugan et al. 2021).
All the baselines are implemented using the RL algorithm
(PPO), described above. GSRS builds upon naive reward
shaping by modifying the reward inversely proportional to
the distance from the RM goal node and by learning policies
for each RM node transition. QRM employs a separate Q-
function for each node in the RM, and DIRL uses Dijkstra’s
algorithm to guide the agent in choosing a path from the
specification graph. The edge-costs for Dijkstra’s algorithm
are calculated as the average RL policy success rate on that
particular sub-task after interacting over a manually defined
number of interactions. For the fifth baseline, we modify
DIRL such that instead of manually specifying a limit on the

number of interactions, which needs to be fine-tuned to suit
the task, we stop learning a sub-task once it has reached the
convergence criteria defined in Section 4. We call this modi-
fied baseline as DIRLc. The sixth baseline (TSCL (Matiisen
et al. 2020)) follows a curriculum learning strategy where
the Teacher samples most promising task without the use of
any automaton to guide the learning progress of the agent.
(Baseline implementation details in Appendix C)

The results in Table 1 and Fig. 2 (averaged over 10 tri-
als) show that AGTS reaches a successful policy quicker
compared to the baseline approaches. AGTSct is a modified
version of AGTS and is described in Sec. 5.1. The learning
curves in Fig. 2 have an offset on the x-axis to account for the
time spent in the initial sub-tasks before moving on to the fi-
nal task in the automaton, signifying strong transfer (Taylor
and Stone 2009). Our custom baseline, DIRLc performs bet-
ter than DIRL, and both outperform other baselines, which
fail to learn a meaningful policy. A pure Teacher-Student
learning strategy (TSCL) (without an automaton to guide
the learning progress) fails to learn a successful policy. We
performed an unpaired t-test (Kim 2015) to compare AGTS
against the best performing baselines at the end of 107 train-
ing steps and we observed statistically significant results
(95% confidence). Thus, AGTS not only achieves a better
success rate, but also converges faster (more on statistical
significance result details in Appendix Section D). Time-to-
threshold metric is defined as the difference in number of
interactions between two approaches to reach a desired per-
formance (Narvekar et al. 2020). From Fig. 2, we see that the
time-to-threshold between AGTS and the best-performing
baseline DIRLc is 1.85× 106 interactions for a desired per-
formance of η = 95% success rate.

AGTSct (AGTS + Cont. Training) - Gridworld Domain
In AGTS, while learning a policy for Task(q, p), we reinitial-
ize the environment to a random initial environmental state
s ∼ S0 once the agent reaches a state where the propositions
for p hold true. To answer the second question (Q2), instead
of reinitializing the environment after reaching such a state
where the propositions for p hold true, we let the Teacher
agent sample a task (let’s say Task(p, r)) from the set X [p]\
DT, whereX is the adjacency matrix for the graph, and DT is
the set of Discarded Tasks, as defined in Algo. 1. This helps

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

(a) TurtleBot domain

0 2 4 6
Timesteps 1e6

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

(b) Turtlebot results (c) Panda arm domain

2 4 6
Timesteps 1e6

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

(d) Panda arm results

Figure 3: Learning curves (Averaged over 10 trials) for the two robotic domains.

the agent continue its training by attempting to learn a policy
π(p,r) for Task(p, r)) while simultaneously learning a sepa-
rate policy π(q,p) for the task Task(q, p). If the agent fails
to satisfy Task(p, r), we reinitialize the environment from
s ∼ S0. Otherwise, the agent continues its training until it
satisfies the high-level objective φ. We call this approach
AGTSct (Detailed algorithm in Appendix A). Results in Ta-
ble 1 and Fig. 2 demonstrate that this approach improves
sample efficiency by reducing the number of interactions re-
quired to learn a successful policy for the gridworld task,
with a time-to-threshold metric of 3.7 × 105 interactions as
compared to the AGTS approach.

5.2 AGTS and AGTSct - Robotic Domains
To answer (Q3), we test AGTS and AGTSct on two simulated
robotic environments with high interaction cost. The task in
Fig. 3a has the following LTLf objective:

φnavigation
f := G ¬Lava ∧ F((Key1|Key2) & F(Goal))

In this task, the agent (a simulated TurtleBot) needs to col-
lect any of the keys (yellow blocks) present in a [3m, 3m]
continuous environment before reaching the goal position
(gray block). At all times, the agent needs to avoid the lava
object (red wall) present in the center. The move forward
(backward) action causes the robot to move forward (back-
ward) by 0.1m and the robot rotates by π/8 radians with
each rotate action. The pick-up and drop actions have ef-
fects similar to the gridworld domain. The robotic domain is
more complex as objects can be placed at continuous loca-
tions. The agent receives an ego-centric image view of the
environment (top-right corner of Fig. 3a), which makes the
task partially observable in nature and more complex to get
a successful policy. The RL agent is described in Sec. 5.1.

The second environment (Fig. 3c) consists of a simu-
lated robotic arm pushing two objects to their target loca-
tions (Gallouédec et al. 2021) with the LTLf formula:

φmanipulation
f := F(p1) & F(p2)

where p1 and p2 are the atomic propositions for ’push-
object-1’, ‘push-object-2’. The robot has continuous action
parameters for moving the arm and a binary gripper action
(close/open). An episode begins with the two objects ran-
domly initialized on the table, and the robotic arm has to

push these two objects to its final location. The agent re-
ceives its current end-effector pose, positions and veloci-
ties of the two objects, and the desired goal position for
the two objects. For this task, we use the Deep Deter-
ministic Policy Gradient with Hindsight Experience Replay
(DDPG-HER) (Andrychowicz et al. 2017) as our RL algo-
rithm. DDPG-HER is implemented using the OpenAI base-
lines (Dhariwal et al. 2017). Both the robotic domains were
modeled using PyBullet (Coumans and Bai 2021), and the
reward structure for both the RL agents was sparse, simi-
lar to the one described in Sec. 5.1. The learning curves for
the TurtleBot domain (Fig. 3b) and the Panda arm domain
(Fig 3d) (averaged over 10 trials) are shown in Fig. 3b and
Fig. 3d respectively. For both domains, AGTS outperforms
all the baselines in terms of learning speed. AGTSct further
speeds-up learning for both the robotic domains. The time-
to-threshold between AGTS and the best performing base-
line (our custom implementation) DIRLc, is 2× 106 for the
TurtleBot domain and 5× 105 for the Panda arm domain.

6 Conclusion
We proposed AGTS, a framework for dynamic task sampling
for RL agents using the high-level LTLf objective coupled
with the Teacher-Student learning strategy. Through exper-
iments, we demonstrated that AGTS accelerates learning,
converging to a desired success rate quicker as compared to
other curriculum learning and automaton-guided RL base-
lines. AGTSct further improves sample efficiency by contin-
uing exploration on a new sub-task once a goal state for a
sub-task is reached. We also evaluate our approach on long-
horizon complex robotic tasks where the state space is large
and the actions are continuous. AGTS reduces training time
without relying on human-guided dense reward function, ac-
celerating learning when the high-level objective is available

Limitations & Future Work: In certain cases, the LTLf

objective can be completely novel and/or generating the la-
beling function can be infeasible. Our future plans involve
expanding our framework to scenarios where obtaining a
precise LTLf specification is challenging. As an extension,
we would like to explore biasing away from sub-tasks rather
than completely discarding them once the target node is
reached, so in the limit, optimal policies can be obtained. We
would also like to explore complex robotic and multi-agent
scenarios with elaborate LTLf objectives.

References
Agrawal, S.; and Goyal, N. 2012. Analysis of thompson
sampling for the multi-armed bandit problem. In Conference
on learning theory, 39–1. JMLR Workshop and Conference
Proceedings.
Alur, R.; Bansal, S.; Bastani, O.; and Jothimurugan, K. 2022.
A framework for transforming specifications in reinforce-
ment learning. In Principles of Systems Design: Essays Ded-
icated to Thomas A. Henzinger on the Occasion of His 60th
Birthday, 604–624. Springer.
Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong,
R.; Welinder, P.; McGrew, B.; Tobin, J.; Pieter Abbeel, O.;
and Zaremba, W. 2017. Hindsight experience replay. Ad-
vances in neural information processing systems, 30.
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-time
analysis of the multiarmed bandit problem. Machine learn-
ing, 47: 235–256.
Bozkurt, A. K.; Wang, Y.; Zavlanos, M. M.; and Pajic, M.
2020. Control synthesis from linear temporal logic speci-
fications using model-free reinforcement learning. In 2020
IEEE International Conference on Robotics and Automation
(ICRA), 10349–10355. IEEE.
Cai, M.; Aasi, E.; Belta, C.; and Vasile, C.-I. 2023. Over-
coming Exploration: Deep Reinforcement Learning for
Continuous Control in Cluttered Environments From Tem-
poral Logic Specifications. IEEE Robotics and Automation
Letters, 8(4): 2158–2165.
Camacho, A.; Chen, O.; Sanner, S.; and McIlraith, S. A.
2018. Non-Markovian rewards expressed in LTL: Guiding
search via reward shaping (extended version). In GoalsRL,
a workshop collocated with ICML/IJCAI/AAMAS.
Chevalier-Boisvert, M.; Willems, L.; and Pal, S. 2018. Min-
imalistic Gridworld Environment for Gymnasium.
Coumans, E.; and Bai, Y. 2021. PyBullet, a Python mod-
ule for physics simulation for games, robotics and machine
learning. http://pybullet.org. Accessed: 2023-04-02.
De Giacomo, G.; Iocchi, L.; Favorito, M.; and Patrizi, F.
2019. Foundations for restraining bolts: Reinforcement
learning with LTLf/LDLf restraining specifications. In Intl.
Conf. on Automated Planning and Scheduling, volume 29.
De Giacomo, G.; and Vardi, M. Y. 2013. Linear temporal
logic and linear dynamic logic on finite traces. In IJCAI’13
Proc. of the Twenty-Third Intl. joint Conf. on Artificial Intel-
ligence, 854–860. Association for Computing Machinery.
Dhariwal, P.; Hesse, C.; Klimov, O.; Nichol, A.; Plappert,
M.; Radford, A.; Schulman, J.; Sidor, S.; Wu, Y.; and
Zhokhov, P. 2017. OpenAI Baselines. https://github.com/
openai/baselines.
Diuk, C.; Cohen, A.; and Littman, M. L. 2008. An object-
oriented representation for efficient reinforcement learning.
In 25th Intl. Conf. on Machine learning, 240–247.
Gallouédec, Q.; Cazin, N.; Dellandréa, E.; and Chen, L.
2021. panda-gym: Open-Source Goal-Conditioned Environ-
ments for Robotic Learning. 4th Robot Learning Workshop:
Self-Supervised and Lifelong Learning at NeurIPS.

Gao, Y.; and Wu, L. 2021. Efficiently mastering the game of
nogo with deep reinforcement learning supported by domain
knowledge. Electronics, 10(13): 1533.
Grzes, M. 2017. Reward shaping in episodic reinforcement
learning.
Hammond, L.; Abate, A.; Gutierrez, J.; and Wooldridge,
M. 2021. Multi-agent reinforcement learning with tempo-
ral logic specifications. arXiv preprint arXiv:2102.00582.
Icarte, R. T.; Klassen, T.; Valenzano, R.; and McIlraith, S.
2018. Using reward machines for high-level task specifica-
tion and decomposition in reinforcement learning. In Intl.
Conf. on Machine Learning, 2107–2116.
Icarte, R. T.; Klassen, T. Q.; Valenzano, R.; and McIlraith,
S. A. 2022. Reward machines: Exploiting reward function
structure in reinforcement learning. Journal of Artificial In-
telligence Research, 73: 173–208.
Jothimurugan, K.; Bansal, S.; Bastani, O.; and Alur, R. 2021.
Compositional reinforcement learning from logical specifi-
cations. Neural Information Processing Systems.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial Intelligence, 101(1): 99–134.
Kim, T. K. 2015. T test as a parametric statistic. Korean
journal of anesthesiology, 68(6): 540–546.
Lattimore, T.; Hutter, M.; and Sunehag, P. 2013. The
sample-complexity of general reinforcement learning. In
International Conference on Machine Learning, 28–36.
PMLR.
Li, X.; Vasile, C.-I.; and Belta, C. 2017. Reinforcement
learning with temporal logic rewards. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), 3834–3839. IEEE.
Matiisen, T.; Oliver, A.; Cohen, T.; and Schulman, J. 2020.
Teacher-Student Curriculum Learning. IEEE Trans. Neural
Networks Learn. Syst., 31(9): 3732–3740.
Moore, E. F. 1959. The shortest path through a maze.
In Proc. of the International Symposium on the Theory of
Switching, 285–292. Harvard University Press.
Narvekar, S.; Peng, B.; Leonetti, M.; Sinapov, J.; Taylor,
M. E.; and Stone, P. 2020. Curriculum Learning for Re-
inforcement Learning Domains: A Framework and Survey.
JMLR, 21: 1–50.
Nguyen, H.; and La, H. 2019. Review of deep reinforcement
learning for robot manipulation. In 2019 Third IEEE Inter-
national Conference on Robotic Computing (IRC), 590–595.
IEEE.
Oudeyer, P.-Y.; and Kaplan, F. 2009. What is intrinsic moti-
vation? A typology of computational approaches. Frontiers
in neurorobotics, 6.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
CoRR.
Shukla, Y.; Kulkarni, A.; Wright, R.; Velasquez, A.; and
Sinapov, J. 2023. Automaton-Guided Curriculum Genera-
tion for Reinforcement Learning Agents. In Proceedings of

the 33rd International Conference on Automated Planning
and Scheduling.
Shukla, Y.; Thierauf, C.; Hosseini, R.; Tatiya, G.; and
Sinapov, J. 2022. ACuTE: Automatic Curriculum Transfer
from Simple to Complex Environments. In 21st Intl. Conf.
on Autonomous Agents and Multiagent Systems, 1192–1200.
Szepesvári, C. 2004. Shortest path discovery problems: A
framework, algorithms and experimental results. In AAAI,
550–555.
Taylor, M. E.; and Stone, P. 2009. Transfer learning for re-
inforcement learning domains: A survey. JMLR, 10(7).
Toro Icarte, R.; Klassen, T. Q.; Valenzano, R.; and McIlraith,
S. A. 2018. Teaching multiple tasks to an RL agent using
LTL. In Autonomous Agents and MultiAgent Systems.
Velasquez, A.; Bissey, B.; Barak, L.; Beckus, A.; Alkhouri,
I.; Melcer, D.; and Atia, G. 2021. Dynamic automaton-
guided reward shaping for monte carlo tree search. In Proc.
of the AAAI Conf. on Artificial Intelligence.
Xu, Z.; and Topcu, U. 2019. Transfer of temporal logic for-
mulas in reinforcement learning. In IJCAI: proceedings of
the conference, volume 28, 4010. NIH Public Access.

