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Abstract— Advances in reinforcement learning (RL) have
enabled robots to learn a wide range of behaviors. Despite
this, scaling the magnitude of learned behaviors to complex se-
quential decision making tasks is still computationally expensive
because of sample inefficiency of many RL approaches. A viable
solution is to learn the complex task through a curriculum, by
optimizing the sequence of interactions of the robot. Gener-
ating the curriculum is still non-trivial and requires extensive
experimentation. In this work, we provide an object-oriented
approach to characterize an environment, and then provide a
framework to generate a low-fidelity (LF) environment for a
complex robotic high-fidelity (HF) environment. We show that
an object-oriented approach helps to conveniently transfer the
schema of the optimized curriculum from the LF environment
to the complex HF environment. We demonstrate that our
approach yields sample efficient learning in robotic navigation
and robotic manipulation domains, where the robot has to
perform a series of sequential decisions to achieve the target.

I. INTRODUCTION

Deep reinforcement learning utilizes the learning capacity
of neural networks to learn complex tasks ranging from Atari
games to robot manipulation tasks [1], [2]. Most existing
methods systems suffer from catastrophic forgetting, which
is the tendency to forget previously learned behavior while
learning a new behavior [3]. This is a serious problem in
sequential decision making tasks, in which an agent needs
to perform a series of sequential behaviors to reach a desired
goal, fairly common in robotic settings. Curriculum Learning
(CL) is a tool that tries to mitigate this problem by gradually
increasing the complexity of tasks the agent tries to learn,
giving the agent sufficient interaction experience to refocus
on the initially learned behaviors [4]. The core of CL is
to generalize the experience and knowledge acquired in
simple tasks and leverage it to learn complex tasks, thereby
increasing performance and reducing training time [5]. A
major limitation of many CL approaches is that the time
to generate the curriculum is greater than the time to learn
the target task from scratch, which prohibits the use of such
methods in complex, real-world, high-fidelity domains [5].
This makes it infeasible to optimize the curriculum in a high-
fidelity robotic domain, given the costly setup. Sim2Real
Transfer [6], [7] allows a model trained in a simulation to be
deployed on a physical robot. However, it suffers from “Re-
ality Gap” [6], where the simulation policy performs poorly
on transfer. Continual learning on incrementally realistic
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Fig. 1: Overview of the curriculum schema transfer procedure. This work
focuses on generating the low-fidelity environment given a high-fidelity
environment and attaining the mapping function

simulations may help to mitigate this problem, as the agent
attempts to abstract and transfer relevant information [9].
One key limitation of Sim2Real approaches is the need for
a simulation whose task Markov Decision Process (MDP)
representation exactly matches the complex dynamics of the
realistic scenario, and is not always feasible [10].

A potential solution for generating a curriculum in a
high-fidelity (HF) environment is to formulate an optimized
curriculum of the task in a simplified version of the HF en-
vironment, i.e., a low-fidelity (LF) environment [11] (Fig 1).
Then, for each task in the curriculum generated in the LF
environment, the task parameters are transferred to generate
a corresponding curriculum in the high-fidelity environment.
This is termed as the curriculum schema transfer approach.
Optimizing the curriculum in the LF environment provides
a convenient, faster and sample efficient way of generating
the curriculum and learning the goal task [11]. This handles
cases in which Sim2Real fails i.e. when the simulation model
has different MDP representation than the physical model.

One key limitation of this approach is the lack of a
set of guidelines that describe in detail what a suitable
LF environment is, and how this LF environment maps
to the HF environment. In this work, we tackle the low-
fidelity environment generation in the curriculum schema
transfer problem, by proposing an object-oriented MDP
based approach [17], [18] to obtain the LF environment and
the LF to HF mapping function for a given HF domain.
We perform extensive evaluation on a sequential robotic
navigation domain and a robotic manipulation domain. The
navigation domain is inspired by Minecraft, in which a
TurtleBot aims to craft a Stone-Axe by navigating in an
arena and collecting pieces of trees and rocks scattered in the
environment, where as the manipulation domain involves a



Panda arm picking items and placing them at target locations.
Through experiments, we show that optimizing curriculum in
the generated LF environment saves learning time and helps
scale the magnitude of behaviors learned by an RL agent
in a robotic setting by proposing an optimized curriculum,
compared to learning without any curriculum.

II. THEORETICAL FRAMEWORK

A. Markov Decision Processes

An episodic Markov Decision Process (MDP) M is de-
fined as a tuple (S,A,p,r,γ,S0,Sf ), where S is the set of
states, A is the set of actions, p(s′|s, a) is the transition
function, r(s′, a, s) is the reward function and γ ∈ [0, 1] is
the discount factor. At each timestep t, the agent observes
a state s and performs an action a given by its policy
function πθ(a|s), with parameters θ. The agent’s goal is to
learn an optimal policy π∗, maximizing its discounted return
G0 =

∑K
k=0γ

kr(sk+1, ak, sk) until the end of the episode
at timestep K. S0 and Sf are the sets of starting states and
terminal states, respectively.

B. Curriculum Learning (CL)

We define a task-level curriculum as:
Let T be a set of tasks, where Mi = (Si,Ai, pi, ri,S0i ,Sfi)
is a task in T . Let DT be the set of all possible transition
samples from tasks in T : DT = {(s, a, r, s′) | ∃Mi ∈
T s.t. s ∈ Si, a ∈ Ai, s′ ∼ pi(·|s, a), r ← ri(s, a, s

′)}.
A curriculum C = [M1,M2, . . . ,MU ] is an ordered list of
tasks, where Mi is the ith task in the curriculum. The ordered
list signifies that samples from Mi must be used for training
a policy before samples from Mi+1 are used. The sequence
of tasks terminates on the target task MU .

C. Object-Oriented MDP

The Object-Oriented MDP (OOMDP) representation [17]
abstracts the task description, enabling us to intuitively
generalize the HF environment. In OOMDP setting, the task
space is abstracted by a set of classes C = {C1, C2, . . .},
and each class Ci ∈ C has a set of parameters Par(Ci) =
{Ci.p1, . . . , Ci.p|p|}. Each parameter Ci.pi has a range of
values the parameter can attain, given by Range(Ci.pi).
At any given instance, an environment consists of a set
of objects O = {o1, o2, . . . , o|o|}, where each object oi
is an instance of a class Ci and is defined by the values
of the parameters for that class oi = Par(Ci(oi)). For a
task, the OOMDP state soo is given by the union of all
object states soo =

⋃
oi∈O

State(oi), where each object state

is the value of the parameters of that object State(oi) =
{oi.p1, . . . , oi.p|p|}. In our setting, a one-to-many mapping
exists between the OOMDP state and the MDP state.

D. Problem Formulation

CL aims to generate a curriculum and train an agent on a
sequence of tasks {M1,M2, ...,MU}, such that the agent’s
convergence performance increases, or its time-to-threshold
performance on the final target task (MU ) improves rela-
tive to learning from scratch. Time-to-threshold (∆) metric

computes how much faster an agent can learn a policy that
achieves expected return G ≥ δ on the target task if it
transfers knowledge, as opposed to learning from another
approach. Here δ is desired performance threshold, in success
rate or episodic reward. The domain T HF of possible tasks
is a set of MDPs in the high-fidelity (HF) environment,
obtained by varying the objects in the target task OMHF

i
,

their parameters and the goal condition gMHF
i

for task MHF
i .

A suitable candidate for a Low-Fidelity environment is
one that has a corresponding OOMDP state sLF

oo for any
HF OOMDP state sHF

oo . To be qualified as a Low-Fidelity
environment, the time-to-threshold for the LF task MLF

i

must be lower than the time-to-threshold for the equivalent
HF task MHF

i , i.e. ∆(MLF
i −MHF

i ) > 0.
The goal of this paper is two-fold:
1) Assuming existence of an LF environment, find a LF

environment that will satisy the above constraints.
2) Assuming existence of a set of mapping functions
F := {f1, . . . , fn} that provide a convenient mapping
between the OOMDP states of the LF and the HF
environments, the goal is to find one such mapping.

Thus, after obtaining an appropriate LF environment for
the final target task of the HF environment, a curriculum
can be generated and optimized in this LF environment, with
inexpensive setup and easier experimentation [11].

Let CTLF

U be the set of all curricula over tasks T LF of
length U in the LF environment. Similarly, let CTHF

U be
the set of all curricula over tasks T HF of length U in the
HF environment. Each task of the optimized curriculum in
LF cU

TLF is mapped through F to obtain an optimized
curriculum for HF cU

THF , where the mapping is an affine
transformation given by:

sHF
oo = K ⊙ sLF

oo + L

where K = [k1, . . . , kn]
T ∈ Rn and L = [l1, . . . , ln]

T ∈ Rn

denote linear mapping and translation vectors and ⊙ is
the Hadamard product. Thus, a parameter mapping (fi :
oi.a

LF
i → oi.a

HF
i ) is given by:

oi.p
HF
i = ki.(oi.p

LF
i ) + li

We assume that the source tasks of the curriculum in the
HF environment are learned before learning the final target
task, as described in Section II-B.

III. LOW-FIDELITY ENVIRONMENT GENERATION

The curriculum generation for the high-fidelity (HF) task
consists of three parts: (1) Generation of a suitable low-
fidelity (LF) environment along with its HF mapping func-
tions (F); (2) curriculum optimization in the LF environ-
ment, and (3) curriculum schema transfer to the HF environ-
ment. We provide a framework for obtaining a suitable LF
environment, and generating the mapping functions accord-
ing to constraints described in Section II-D.

To generate a suitable LF environment, we begin by
modelling the HF target task using OOMDP approach [17],
[18]. The HF environment is modelled using a set
of classes CHF = {CHF

1 , . . . , CHF
|c| }, and each class



(a) HF (left) and LF (right) target task for Crafter-TurtleBot domain (b) HF (left) and LF (right) target task in the Panda-Pick-and-Place domain

Fig. 2: Illustration of the final target task in the high-fideity (HF) and low-fidelity (LF) environments for a Crafter-TurtleBot domain and Panda-Pick-
and-Place manipulation domain. The goal of the agent in the navigation domain is to craft a pogo stick at the crafting table by collecting two trees and a
rock, whereas in the manipulation domain, the goal is to pick an object and place it at a target location.

Algorithm 1 LF Gen(CHF ,PHF ,OMHF
U

,X , n)

Output: LF target task descriptors: CLF ,PLF ,OMHF
U

Set of mapping functions: F
Placeholder Initialization: Set of Classes in LF: CLF ← ∅
Set of Parameters for each class in LF: PLF ← ∅
Set of Objects in LF target task: OLF

U ← ∅
Set of Mapping functions F ← ∅
Algorithm:
1: CLF = {c | c ∈ CHF } ▷ Assign set of classes in LF
2: for o ∈ OMHF

U
do

3: c← getBaseClass(o)
4: OMLF

U
← OMLF

U
∪ {createObject(c)} ▷ Create objects in LF

5: PHF
c = PHF [c]

6: for p ∈ PHF
c do

7: PLF
c ← PLF

c ∪ {p} ; PLF ← PLF ∪ PLF
c

8: if |Range(o.p)| ≤ n then ▷ Compare parameter range with
maximum permissible cardinality constant given by human expert

9: o.pLF = o.p
10: fo.p = 1
11: else
12: o.pLF = (o.p/X [c, p]) ▷ LF value given by hyperparam
13: fo.p = 1/X [c, p]

14: OMLF
U

[o].p = o.pLF ▷ Assign value to LF object
15: F ← F ∪ {fo.p}
16: return CLF ,PLF ,OMLF

U
,F

CHF
i ∈ CHF has a set of parameters Par(CHF

i ) =
{CHF

i .p1, C
HF
i .p2, . . . , C

HF
i .p|p|}, each parameter CHF

i .pi
contained within a range Range(CHF

i .pi). The target task in
the HF environment, with MDP MHF

U , has a set of objects
OMHF

U
= {oHF

1 , oHF
2 , . . . , oHF

|o| } with object states given by
the value of the parameters of that object State(oHF

i ) =
{oHF

i .pi, o
HF
i .p2, . . . , o

HF
i .p|p|}.

The overall approach of generating the LF environment
and the mapping function is given in Algorithm 1. The input
to LF Gen is the set of HF environment classes CHF , the
set of set of parameters PHF , objects in the the HF target
task OMHF

U
, a set of discretization hyperparameter constants

X , and a human-expert specified finite scalar n, denoting
the maximum desired cardinality for the parameter range for
the task in hand. The output of LF Gen is the set of LF
environment classes CLF , the set of set of parameters PLF ,
objects in the the LF target task OMLF

U
(together making

up the LF target task), along with the LF ↔ HF mapping
function set. To begin, all the classes in the HF environment
have a corresponding class in the LF environment (line
1). For each object in the HF target task, LF Gen first

determines the base class for the object, and creates an LF
object for the class (lines 2-4). Then, for each parameter of
that class, LF Gen determines if the range for the parameter
lies with the desired cardinality for the task. If it does,
then the value of the parameter of the HF target task
object is equivalent with the value of the parameter of the
LF target task object, and the mapping between these two
parameters is 1 (lines 8-10). If the range of the parameter
exceeds the desired cardinality, then the LF object parameter
is determined by the discretization hyperparameter for the
HF parameter (X [c, p]), and the mapping is given by the
reciprocal of the hyperparameter (lines 11-13).

Thus, by iterating over all parameters for all classes in the
HF environment, LF Gen bounds the range of the parameter
space, thereby decreasing the number of OOMDP states,
while keeping the objective of the task unchanged. This
accelerates the curriculum optimization procedure, and pro-
vides a convenient mapping for curriculum schema transfer.

Once a suitable LF environment is generated, the next step
entails optimizing the curriculum in LF environment. The
curriculum in the LF is obtained using “ACuTE” [11], where
the agent generates source tasks by varying the parameters
of the objects present in the final target task, and uses beam
search to optimize the source task sequence based on the
transfer potential to the target task. Then, each source task
of the curriculum in LF is mapped to a source task in HF
using the set of mapping functions (F).

IV. EXPERIMENTS AND RESULTS

We test our approach on two complex robotic domains.
The Crafter-TurtleBot domain (Fig 2a) involves a Turtle-
Bot whose goal is to collect 2 trees and a rock and then
craft a stone-axe at the crafting table. The agent needs to
navigate, face the object and perform the break action to
collect it in inventory. The set of classes in the HF envi-
ronment are CHF

nav = {wall, trees, rocks, crafting tables},
and the class parameters are: Par(wall) = {height, width},
where these parameters can assume continuous values within
[1m, 3m]; and Par(trees)={no of trees}; Par(rocks) =
{no of rocks}; Par(crafting tables) = {no of CT},
with these parameters taking values from a discrete range.

The agent is a TurtleBot, rendered in PyBullet [19].
In the HF environment, the agent’s navigation actions are
moving forward 0.25 units and rotating by π

9 radians. The



agent’s sensor emits a beam at incremental angles of π
10

to determine the closest object in the angle of the beam.
Two additional sensors provide information on the amount of
wood and stones in the agent’s inventory. The objects for the
classes {trees, rocks, crafting tables} assume continuous
locations, chosen randomly, to more closely model the real-
world. So an OOMDP state for an object will correspond to
multiple MDP states, denoting a one-to-many mapping.

The set of classes in the LF environment is equiva-
lent to the set of classes in the HF environment CLF

nav =
{wall, trees, rocks, crafting tables}, but the range of val-
ues for all continuous parameters (wall(height, width)) are
bounded within a discrete set {4, 5, ..., 12}, reducing the
number of OOMDP states attainable. Thus, even though
the navigable area in the HF environment can attain values
within the continuous range [1×1,3×3]m2, the LF environ-
ment navigable area is restricted to a gridworld setting with
height and width of the grid within the discrete range [4, 12].

The LF environment is structurally similar to the HF
environment, but follows different dynamics. The agent’s
navigation actions are moving 1 cell forward if the cell ahead
is clear or rotating π/2 clockwise or counter-clockwise. In
the HF and LF target task, the agent receives a reward of
+1000 upon crafting a stone-axe, and −1 for all other steps.
In the LF environment, the agent’s state representation is
similar to the HF environment. The LF agent’s sensor is
identical to the HF agent, but it emits a beam at incremental
angles of π

4 to account for the smaller OOMDP state space.
The Panda-Pick-and-Place domain (Fig 2b) involves

a robotic arm picking up objects and placing them at
their target locations [20], rendered in PyBullet [19].
The set of classes in the HF environment are CHF

man =
{wall, objects}, and the class parameters are: Par(wall) =
{length, width, height}, where these parameters can as-
sume continuous values within [0.05m, 0.4m]; and param-
eter Par(objects) = {no of objects}; within a discrete
range. The set of classes in the LF and HF environments
are equivalent; CLF

man = {wall, objects}, but the range of
values for all continuous parameters in the HF environment
(wall(length, width, height)) are bounded within the set
{2, ..., 8}, reducing the number of OOMDP states attainable.

The actions of the agent in the HF domain are continuous
end-effector dispacements, while in the LF environment, the
actions involve discrete end-effector displacements in the 3D
gridworld. The agent’s sensor provides the agent with its end-
effector location along with the current location of the object
and the target location, and the gripper state. The agent acts
in a sparse reward setting, and receives a reward of +1 if it
achieves the goal and −1 otherwise.
LF Gen generates a LF target task from the HF target

task1. The next step entails optimizing the curriculum for
this LF target task using “ACuTE”, and obtaining the HF
curriculum using the mapping from LF Gen2.

1Code link: https://github.com/shukla-yash/LF_Gen/
2For curriculum optimization in LF, see Appendix Section A.

Link to Appendix: https://github.com/shukla-yash/LF_Gen/
blob/master/TechnicalAppendix.pdf
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Fig. 3: Learning Curves for Crafter-TurtleBot navigation domain (a) and
Panda-Pick-and-Place manipulation domain (b).

Fig 3 shows the learning curves on the final HF target task
with and without any curriculum (averaged over 10 trials).
The learning curves for the curriculum approaches have an
offset on x-axis to account for interactions in the source
tasks of the curriculum, signifying a strong transfer [21].
From the learning curves, it is evident that the curriculum
optimized using a low-fidelity (LF) environment helps in
significantly reducing the number of interactions required
to converge to a successful policy in the target task. The
time-to-threshold between policy learned through curriculum
and without any curriculum in the Crafter-TurtleBot domain
is 5× 107 timesteps and 2× 104 in the Panda-Pick-and-
Place manipulation domain. We also evaluate the curriculum
schema transfer through imperfect mapping between the LF
and the HF environments, by incorporating multivariate noise
in the set of mapping functions. We observe that the schema
of the curriculum transferred even with noisy mappings
achieves improved time-to-threshold and better success rate
performance than learning from scratch3.

V. CONCLUSION AND FUTURE WORK

We proposed an Object-Oriented framework for charac-
terizing low-fidelity (LF) environments for complex high-
fidelity (HF) environments. We demonstrated that object-
oriented MDP provides a convenient way to generate a LF
environment and obtain a mapping between the two envi-
ronments. Our experiments show improved time-to-threshold
performance on a robotic navigation and a robotic manipula-
tion domain, even with imperfect mappings. Thus, LF Gen
can be employed in obtaining curriculum for complex robotic
tasks, helping in scaling robot learning.

An extension of our approach will be to further automate
the LF generation procedure. A potential solution is to utilize
HF environment knowledge to come up with a mapping for
the LF Gen approach. Additionally, we would like to explore
situations where a single robot performs navigation and
manipulation behaviors. A possible approach will be to have
separate LF environments for navigation and manipulation,
interlinked to fulfill a common objective defined by the task
in question.

3More details on experiments and results in Appendix Section B.
Link to Appendix: https://github.com/shukla-yash/LF_Gen/
blob/master/TechnicalAppendix.pdf

https://github.com/shukla-yash/LF_Gen/
https://github.com/shukla-yash/LF_Gen/blob/master/TechnicalAppendix.pdf
https://github.com/shukla-yash/LF_Gen/blob/master/TechnicalAppendix.pdf
https://github.com/shukla-yash/LF_Gen/blob/master/TechnicalAppendix.pdf
https://github.com/shukla-yash/LF_Gen/blob/master/TechnicalAppendix.pdf
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