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Abstract—Emergence of Deep Neural Networks in Reinforce-
ment Learning (RL) have enabled robots to learn a wide range of
behaviors. Despite these advances, in many tasks, the number of
interactions required to learn a policy are prohibitively expensive.
This is infeasible in real world settings, where interactions
are expensive. Curriculum learning tackles this problem, but
generating a curriculum still requires costly interactions in the
environment. Learned behaviors transferred from simulation to
a real world scenario suffer from ‘Sim2Real’ gap because of the
differences in the two domains. In this work, we provide a holistic
framework aimed at generating a low-fidelity (LF) environment
for a complex robotic high-fidelity (HF) environment, optimizing
the curriculum in the LF environment and transferring it to the
HF environment. We demonstrate that our approach improves
learning performance in robotic navigation and manipulation
domains, by requiring fewer interactions to learn a policy for
a sequential decision making task.

Index Terms—Curriculum Learning, Reinforcement Learning,
Sim2Real

I. INTRODUCTION

Sim2Real Transfer [1], [2] allows a model trained in a
simulation to be deployed on a physical robot. However, it
suffers from “Reality Gap” [1], where the simulation policy
performs poorly on transfer to the real world. Continual learn-
ing on incrementally realistic simulations may help mitigate
this problem [3]. One key limitation of Sim2Real approaches is
the need for a simulation whose task Markov Decision Process
(MDP) representation exactly matches the complex dynamics
of the realistic scenario, which is not always feasible [4]. A
common technique to achieve Sim2Real Transfer is to abstract
the information from the simulator so that it is better suited
for the realistic domain [5]. This still requires the system
dynamics of the simulation and realistic domains to match. In
this work, we aim to study cross-domain knowledge transfer,
and how it can help aid learning in the realistic scenario.

Cross-domain knowledge transfer techniques aid learning in
domains that do not share the MDP representations, but are se-
mantically related [6], [7]. Most of these approaches require an
explicit mapping between the two domains, usually provided
by a human expert. In this work, we provide a framework
to develop a curriculum for the complex realistic task in the
high-fidelity (HF) domain by optimizing the task curriculum
in a newly generated low-fidelity (LF) representation of the
HF domain, and transfer the curriculum [8], [9]. This would
generate curriculum for the HF, without having to interact in

Complex HF
 Target task

LF Target task and 
HF   LF mapping 

Map 
HF  LF 

Curriculum 
Optimization 

in LF

Generate LF 
environment

Optimized 
curriculum in LF…

…
…
…

Learning HF target 
through curriculum

Curriculum 
Schema 
Transfer

…

Fig. 1: Overview of the curriculum schema transfer procedure. This work
focuses on generating the low-fidelity environment given a high-fidelity
environment and attaining the mapping function

the HF domain. Through experiments in a robotic navigation
and manipulation domain, we show that this requires fewer
interactions than learning from scratch, and is applicable in
settings where Sim2Real fails i.e. when the simulation model
has different MDP representation than the physical model.

II. CURRICULUM TRANSFER FRAMEWORK

The overall procedure of performing a Curriculum Schema
Transfer involves four stages and is described in Fig 1: (1)
Generating a low-fidelity (LF) version of the high-fidelity
(HF) task along with the LF↔HF mapping; (2) LF curriculum
optimization; (3) Transferring curriculum schema from LF to
HF (4) Learning HF task trough the curriculum.

A. Generating a low-fidelity (LF) environment

A suitable characteristic for a LF environment is that the
time-to-threshold for the LF task MLF

i is lower than the
time-to-threshold [10] for the equivalent HF task MHF

i , i.e.
∆(MLF

i − MHF
i ) > 0. To generate a LF environment, we

define the HF task using an Object-Oriented MDP (OOMDP)
representation [11], [12] along with its existing MDP rep-
resentation. OOMDP representation helps in abstracting the
HF environment using a set of classes, and each class has
parameters that take values within a range. At any given
instance, an environment consists of a set of objects, where
each object is an instance of a class and is defined by the values
of the parameters for that class. The OOMDP state is given
by the union of all object states, where each object state is the



(a) HF (left) and LF (right) for Crafter-TurtleBot (b) HF (left) and LF (right) in Panda-Pick-and-Place
Fig. 2: Target task illustration in the HF and LF environments for a Crafter-TurtleBot domain and Panda-Pick-and-Place domain. In Crafter-TurtleBot, agent’s
goal is to craft a stone-axe by collecting two trees and a rock. The goal in the manipulation domain is to place an object it at a target location.

value of the parameters of that object. The LF environment is
generated by assuming an equivalency in the classes between
the HF and LF environments CHF ≡ CLF , but differences in
the range of parameter values for a class in LF environment.
A human expert describes a discretization hyperparameter for
a class parameter, that helps in reducing the range of the
class parameter in the LF environment. Thus, by iterating over
all parameters for all classes in the HF environment, the LF
environment bounds the range of the parameter space, thereby
decreasing the number of OOMDP states, while keeping
the objective of the task unchanged. This accelerates the
curriculum optimization procedure, and provides a convenient
LF↔HF mapping for curriculum schema transfer.

B. Curriculum Optimization in low-fidelity (LF) environment
Once we have a suitable LF candidate, the next step is to

optimize the curriculum in the LF environment. This is done
using beam search algorithm, where a source task candidate
is obtained by varying the OOMDP state parameters of the
LF target task. This is carried out N times, where N is the
length of the beam. Out of these N source tasks, the W source
task that took the least amount of interactions to converge to an
optimal policy are selected (W<N ). Then, for each of these W
source tasks, we again initialize N source tasks by varying LF
OOMDP target task parameters. This process is continued until
we reach the final target task. The idea behind this approach
is to sequence source tasks in increasing order of difficulty, to
reduce the overall interactions to reach convergence in target
task. The converged policy of a source task is used as the
initial policy of the next source task in curriculum.

C. Low-fidelity (LF) to high-fidelity (HF) schema transfer
Once we have a curriculum in LF, the next step involves

utilizing the LF↔HF mapping to transfer the schema of the
optimzied curriculum from the LF to HF environment. Thus,
now we have a curriculum in HF environment, without ever
having to interact in the expensive HF environment.

D. Learning high-fidelity (HF) target task through curriculum
The curriculum schema transfer yields us a curriculum in

HF. The agent starts with a random policy to learn the first
source task in the curriculum. Once the agent learns the first
source task, this policy is transferred to the next source task.
Thus, the agent iteratively learns the tasks in the curriculum,
culminating in the final target task1.

1More details and code information in Appendix https://github.com/
shukla-yash/LF Gen/blob/master/TechnicalAppendix.pdf
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Fig. 3: Learning Curves for Crafter-TurtleBot navigation domain (a) and
Panda-Pick-and-Place manipulation domain (b).

III. EXPERIMENTS AND RESULTS

We test our framework on two robotic domains. Fig 2a
shows a continuous robotic navigation domain, in which a
turtlebot needs to collect two pieces of trees, one piece of
rock and approach the crafting table to craft a stone-axe.
The LF domain involves an agent navigating in a 2D grid,
where objects have discrete locations on the grid. The robotic
manipulation domain Fig 2b is based on panda-gym [13], in
which a robotic arm needs to pick an object and place it at
target location. The LF domain involves an agent manipulating
in a 3D grid, where objects have discrete locations on the
grid. The discretization reduces OOMDP state space and
helps in quicker optimization of curriculum. Fig 3 shows the
performance of the curriculum schema transfer on the two
domains as compared to learning from scratch. We also test
our approach in scenarios where an exact LF↔HF mapping is
not available, by introducing a multivariate gaussian noise over
the parameters. The learning curves shows that it performs
better than learning from scratch.

IV. CONCLUSION AND FUTURE WORK

In this work, we proposed a framework that can optimize
a curriculum for a complex robotic task in a simplified
representation, and can transfer the schema of the curriculum.
We showed that this method does not require an equivalent LF
and HF MDP representation, and works even when Sim2Real
fails. In future work, we would like to use multiresolution
manifold representations to generate the LF environment, as
it will help us to transfer policy and value functions across
the LF and HF environments. Additionally, we would like to
explore LF↔HF↔ real-world schema transfer.

https://github.com/shukla-yash/LF_Gen/blob/master/TechnicalAppendix.pdf
https://github.com/shukla-yash/LF_Gen/blob/master/TechnicalAppendix.pdf
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