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Abstract

Despite advances in Reinforcement Learning, many sequen-
tial decision making tasks remain prohibitively expensive
and impractical to learn. Recently, approaches that automat-
ically generate reward functions from logical task specifi-
cations have been proposed to mitigate this issue; however,
they scale poorly on long-horizon tasks (i.e., tasks where the
agent needs to perform a series of correct actions to reach
the goal state, considering future transitions while choosing
an action). Employing a curriculum (a sequence of increas-
ingly complex tasks) further improves the learning speed of
the agent by sequencing intermediate tasks suited to the learn-
ing capacity of the agent. However, generating curricula from
the logical specification still remains an unsolved problem.
To this end, we propose AGCL, Automaton-guided Curricu-
lum Learning, a novel method for automatically generating
curricula for the target task in the form of Directed Acyclic
Graphs (DAGs). AGCL encodes the specification in the form
of a deterministic finite automaton (DFA), and then uses
the DFA along with the Object-Oriented MDP (OOMDP)
representation to generate a curriculum as a DAG, where
the vertices correspond to tasks, and edges correspond to
the direction of knowledge transfer. Experiments in grid-
world and physics-based simulated robotics domains show
that the curricula produced by AGCL achieve improved time-
to-threshold performance on a complex sequential decision-
making problem relative to state-of-the-art curriculum learn-
ing (e.g, teacher-student, self-play) and automaton-guided re-
inforcement learning baselines (e.g, Q-Learning for Reward
Machines). Further, we demonstrate that AGCL performs well
even in the presence of noise in the task’s OOMDP descrip-
tion, and also when distractor objects are present that are not
modeled in the logical specification of the tasks’ objectives.

1 Introduction
Deep reinforcement learning utilizes neural networks to
solve complex tasks ranging from Atari games to robot ma-
nipulation (Gao and Wu 2021; Karpathy and Van De Panne
2012). Despite these advances, many tasks remain pro-
hibitively expensive to learn from scratch, requiring large
number of interactions. This problem worsens in long-
horizon tasks where sparse reward settings and poor goal
representations make the task difficult to solve. In many
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practical scenarios, the objective for a task is known be-
fore commencing learning the task, and thus it can be cap-
tured using high-level specifications that have an equivalent
automaton representation (Velasquez et al. 2021; Jothimu-
rugan et al. 2021). This formulation allows decomposing
the task into sub-goals, where each sub-goal can be learned
by a Reinforcement Learning (RL) agent. This approach of
automaton-guided RL is beneficial in scenarios where the
high-level task objective is known beforehand and can be
expressed using an automaton, but the low-level transition
dynamics are unavailable and hence motion and symbolic
planners cannot be reliably used. Recently, many approaches
have made use of richer language representations (such as
finite-trace Linear Temporal Logic (LTLf ) (De Giacomo
and Vardi 2013)) to incorporate history in the task Marko-
vian Decision Processes (MDPs). This technique helps the
RL agent to shape reward effectively to achieve the goal
in sparse reward settings, eliminating the need to rely on
human guidance for shaping the reward function (Cama-
cho et al. 2018; Icarte et al. 2018; Velasquez et al. 2021).
However, reward shaping falls short in complex sequential-
decision making tasks as it does not generate simpler sub-
tasks suited to the current knowledge of the agent, and in-
centivizes policies to reach local optima. In this work, we
extend automaton-guided RL beyond reward shaping, by
deriving a curriculum for the target objective. Curriculum
Learning (CL) intends to optimize the order in which an
agent attempts tasks, increasing the expected return while
reducing training time for complex tasks (Narvekar et al.
2020; Foglino, Christakou, and Leonetti 2019). Neverthe-
less, automaton-guided curriculum generation still remains
an unsolved problem in literature.

We explore representing the high-level task objective
using finite-trace Linear Temporal Logic (LTLf ) formu-
las (De Giacomo and Vardi 2013) which can be equivalently
represented using Deterministic Finite Automaton (DFA).
Using the structure of the DFA, we generate a curriculum
for the target objective. While the DFA provides a graph-
ical representation of the sequence in which the sub-goals
must be achieved, it does not specify the individual sub-
tasks of the curriculum. Thus, generating a curriculum is
non-trivial as it requires the agent to reason over multi-
ple potential curriculum environment configurations for the
same sub-goal objective. Given a high-level task objective in
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Figure 1: Overview of the automaton-guided curriculum
generation procedure. Given the high-level task description,
we use the equivalent automaton representation to come up
with a sequence-based and a graph-based curriculum.

the form of a DFA, we propose AGCL, Automaton-guided
Curriculum Learning (Fig. 1), that generates two types of
curricula: 1) A sequence of sub-tasks that increase in or-
der of difficulty for the agent, and 2) A directed acyclic
graph (DAG), where agents can transfer knowledge con-
currently learned in multiple source tasks to learn a com-
mon target task1. Unlike previous graph-based curriculum
approaches (Svetlik et al. 2017; Silva and Costa 2018), ours
does not require access to all possible state configurations
of the environment. Further, generating the curriculum does
not require additional interactions with the environment, and
learning through the curriculum yields quicker convergence
to a desired performance compared to learning from scratch,
automaton-guided reward shaping baselines - GSRS (Cama-
cho et al. 2018), QRM (Icarte et al. 2018), and curriculum
learning baselines - Teacher-Student (Matiisen et al. 2020)
and self-play (Sukhbaatar et al. 2018).

We further perform an extensive evaluation on a set of
challenging robotic navigation and manipulation tasks and
demonstrate that AGCL reduces the number of interac-
tions with the target environment by orders-of-magnitude
when compared to state-of-the-art curriculum learning and
automaton-guided reinforcement learning baselines.

2 Related Work
Curriculum Learning (CL) in RL has been studied for
games (Gao and Wu 2021), robotic tasks (Karpathy and Van
De Panne 2012), and self-driving cars (Qiao et al. 2018).
A survey on CL (Narvekar et al. 2020) summarizes the
three main elements of CL as task generation, task sequenc-
ing, and knowledge transfer. Task generation builds a set of
source tasks given the target task (Kurkcu, Campolo, and
Tee 2020). Task sequencing optimizes the task sequence to
enhance learning in the target task (Narvekar, Sinapov, and

1An in-depth analysis of Fig. 1 is provided in Section 3

Stone 2017; Matiisen et al. 2020), and knowledge transfer
determines what information must be transferred from the
source to the target to promote effective learning (Da Silva
and Costa 2019; Taylor and Stone 2009). Existing graph-
based CL methods (Svetlik et al. 2017; Silva and Costa
2018) assume knowledge of the set of states in the task, and
thus cannot be used for complex tasks that require function
approximation. Metaheuristic search methods serve as a tool
to evaluate the CL frameworks (Foglino, Christakou, and
Leonetti 2019). In most methods, optimizing a curriculum is
still computationally expensive and sometimes takes more
interactions compared to learning from scratch. Our pro-
posed framework addresses this concern by utilizing high-
level logical specification to derive an optimized graphical
representation of a curriculum, eliminating the sunk cost of
interactions required to optimize the curriculum.
Automaton-guided RL approaches specify tasks us-
ing temporal logic-based high-level language specifica-
tions (Toro Icarte et al. 2018; Velasquez et al. 2021; Jiang
et al. 2021). Most approaches generate a dense reward func-
tion to speed up learning. Learning separate policies for sub-
goals of a task helps abstract knowledge which can be used
in new tasks (Icarte et al. 2018). Another technique is to
shape the reward inversely proportional to the distance from
the accepting node in the automaton (Camacho et al. 2018)
however, it leads to inefficient reward settings. Augment-
ing the reward function with a dynamic Monte Carlo Tree
Search helps mitigate this problem (Velasquez et al. 2021).
DIRL interleaves high-level planning with RL to learn a
policy for each edge, overcoming challenges introduced by
poor representations (Jothimurugan et al. 2021). However,
this approach becomes inefficient when there are multiple
paths to the target in the graph, and other reward shaping
techniques prove inefficient compared to curriculum learn-
ing (Pocius et al. 2018). In this work, we use the underlying
DFA to develop a graphical representation of the curricu-
lum, and implement a transfer learning mechanism compat-
ible with a function-approximator, outperforming state-of-
the-art baselines.

3 Theoretical Framework

3.1 Markov Decision Processes

An episodic Markov Decision Process (MDP) M is defined
as a tuple (S,A,P,R,S0,Sf , γ, L), where S is the set of
states,A is the set of actions,P(s′|s, a)is the transition func-
tion, R : S ×A× S → R is the reward function, S0 and
Sf are the sets of starting and final states respectively, and
γ∈ [0, 1] is the discount factor. At each timestep t, the agent
observes a state s and performs an action a given by its pol-
icy function πθ(a|s), with parameters θ. The agent’s goal is
to learn an optimal policy π∗, maximizing its discounted re-
turn G0 =

∑K
k=0γ

kr(s′k, ak, sk) until the end of the episode
at timestep K. The labeling function L : S → 2AP maps
a state in the MDP to a set of atomic propositions that hold
true for that state. For example, in Fig. 1 the set of atomic
propositions, AP = {tree, rock}.
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(a) Sequence-based curriculum (b) Graph-based curriculum

Figure 2: Examples of sequence-based (left) and graph-based (right) curricula.

3.2 Curriculum
Let M be a set of tasks, where Mi =
(Si,Ai, Pi, Ri,S0,i,Sf,i, γi, Li) is a task in M. Let
DMi be the set of samples associated with task Mi :
DMi ={(s, a, r, s′)|s ∈ Si, a ∈ Ai, s′ ∼ Pi(·|s, a), r ←
Ri(s, a, s

′)}. A curriculum T = (V, E , g,M) is a di-
rected acyclic graph, where V is the set of vertices,
E ⊆ {(x, y)|(x, y) ∈ V × V ∧ x ̸= y} is the set of directed
edges, and g : V → {DMi |Mi ∈ M} is a function that
associates vertices to samples of a single task in M. A
directed edge (vj , vk) indicates that samples associated with
vj ∈ V should be trained on before samples associated with
vk ∈ V . All paths terminate on a single sink node vt ∈ V2.

A graph-based curriculum is a general case of a curricu-
lum, where the indegree and outdegree of each vertex v ∈ V
can be greater than one, and there can be multiple source
nodes but only one sink node. A sequence-based curriculum
is a special case of a curriculum, where the indegree and out-
degree of each vertex v ∈ V is at most 1, and there is only
one source node and one sink node as shown in Fig. 1. Ex-
amples of a sequence-based curriculum and a graph-based
curriculum are shown in Fig. 2(a) Fig. 2(b) respectively.

3.3 Object Oriented MDP
The Object-Oriented MDP (OOMDP) representation ab-
stracts the task description, as to intuitively generalize the
elements in the environment and their properties (Diuk, Co-
hen, and Littman 2008). In OOMDPs, the task space is ab-
stracted by a set of classes C where each class Ci ∈C has a
parameter set Par(Ci)= {Ci.p1,. . . ,Ci.p|p|}. Each param-
eter Ci.pi has a range of values, given by Range(Ci.pi).
At any given time, an environment consists of a set of ob-
jects O= {o1,. . . ,o|o|}, where each object oi is an instance
of a class Ci and is defined by the parameters for that class
oi = Par(Ci(oi)). For a task, the OOMDP state soo is given
by the union of all object states soo=∪oi∈OState(oi), where
each object state is the value of the parameters of that ob-
ject: State(oi)={oi.p1, . . . , oi.p|p|}. Since the OOMDP rep-
resentation is a high-level abstraction of the task space, we

2We find curriculum for single target task. Curriculum design
for multiple target tasks is beyond the scope of this paper.

assume a many-to-one mapping between a subset of MDP
states (Ssub) and the OOMDP state (soo); w : Ssub → soo.
For the task in Fig. 1, the OOMDP description consists
of classes C = {world size, trees, rocks}, with the pa-
rameters: C(world size) = {width, height} (width and
height of the grid), C(trees) = {treesenv, treesinv} (num-
ber of trees in the environment and inventory of the agent),
and similarly, C(rocks) = {rocksenv, rocksinv}. In a task,
classes have objects whose parameters are assigned val-
ues within a range. Example: Par(world size[height])) =
[5, 10] denotes that the height of the grid can have any value
within the range [5, 10]. The MDP transition s a−→s′ and the
OOMDP transition soo

a−→s′oo occur synchronously.

3.4 Linear Temporal Logic and Deterministic
Finite Automata (DFA)

We define the high-level specification of our task using
finite-trace Linear Temporal Logic (LTLf ) formulas (De Gi-
acomo and Vardi 2013). LTLf allows us to succinctly ex-
press complex temporal tasks such as reachability, safety, re-
currence, persistence or a combination of these. Most impor-
tantly, the language of any LTLf formula can equivalently be
represented as a Deterministic Finite Automaton (DFA).

Given a set of atomic propositions, AP , a formula
in LTLf is constructed inductively using the operations
p,¬ϕ, ϕ1∨ϕ2, Xϕ, Gϕ, Fϕ,ϕ1Uϕ2 where p ∈ AP and ϕ, ϕ1
and ϕ2 are LTLf formulas. The operator ¬ denotes negation,
∨ denotes disjunction, and the operators X, G, F, U denote
Next, Always, Eventually, and Until respectively. An LTLf
formula can be translated into a DFA U = {Ω, ω0,Σ, δ, F},
where Ω is the set of nodes with initial node ω0 ∈ Ω,
Σ = 2AP is an alphabet defined over a set of atomic propo-
sitions AP, δ : Ω×Σ→ Ω is a deterministic transition func-
tion, and F ⊆ Ω is the set of accepting nodes. Given any
two states ω, ω′ ∈ Ω and a symbol σ ∈ Σ, we denote the
transition ω′ = δ(ω, σ) as ω σ−→ ω′. A path ζ = ω0ω1 . . . ωn
is a finite-length sequence of states such that, for any i =
0 . . . n − 1, we have ωi+1 = δ(ωi, σi). The occurrence op-
erator, Occ(ζ), defined as {ω ∈ Ω|ω appears in ζ}, returns
the set of nodes in the path ζ.

The set of atomic propositions in AP is shared within the



MDP and the DFA. The labeled MDP and the automaton
(DFA) operate synchronously. Specifically, a transition s a−→
s′ in the labeled MDP triggers a transition ω

L(s′)−−−→ ω′ in
the DFA. Therefore, the high-level specification is achieved
in the labeled MDP if and only if a final state is reached
in the DFA. We define a one-to-many relationship using the
function P : Ω → M, that given a node ω ∈ Ω in the
DFA, returns the set of tasks that can reach the node ω from
the start node ω0

3. The equivalent DFA representation of the
LTLf objective F(tree)∧F(rock) is shown in Fig. 1.

3.5 Running Example
Consider the environment description shown in Fig. 1. We
start with the target task MDP Mtarget and its OOMDP de-
scription (described in Sec. 3.3) along with the LTLf for-
mula for the task (F(tree)∧ F(rock)) which corresponds to
the automaton shown in Fig. 1. When the agent follows a
policy π that collects a tree followed by a rock, it satisfies
the path ζ : ω0

tree−−→ ω1
rock−−−→ ω3. Since ω3 is in the set

of accepting nodes F , the policy produces a trajectory in the
MDP that satisfies the LTLf objective. Generating curricu-
lum given the DFA involves reasoning over the trace paths
as well as the set of MDPs that can generate trajectories to
reach a node in the DFA. For example, to have a trajectory
(of length> 0) that reaches the node ω1, the agent must have
a tree in its inventory by the end of the episode. To achieve
this, at least one tree must be present in the environment
when the episode starts for the agent to collect. Using this
information, a potential source task of the curriculum is gen-
erated by varying the parameter values for the objects within
the range specified in the OOMDP representation. Thus, a
query to the function P (ω1) will generate the set of MDPs
M1 that have at least 1 tree in the initial task configuration,
while varying other object parameters. The set of initial and
final OOMDP states forM1 will be given byw(P (ω1)(S0))
and w(P (ω1)(Sf )) respectively as the function w maps the
MDP state to an OOMDP state. An example of a sequence-
based curriculum for the path ζ : ω0

tree−−→ ω1
rock−−−→ ω3 is

shown in Fig. 2, where in the first task M0, the agent learns
to collect a tree in a smaller environment, while transferring
the knowledge to the final task. For the graph-based curricu-
lum in Fig. 2, two agents simultaneously learn to collect a
tree and a rock separately, and transfer their knowledge to
learn the target task. The curriculum for the agent that learns
to collect a tree in M0 is derived from the set of MDPs pro-
duced using the path ζ : ω0

tree−−→ ω1
rock−−−→ ω3, whereas

the curriculum for the agent that learns to collect a rock in
M1 is derived using the path ζ : ω0

rock−−−→ ω2
tree−−→ ω3.

The agent’s trajectory in the final target task Mtarget can
follow any of the paths in the DFA. The knowledge from the
source tasks in the curriculum guides the agent in the final
target task to make decisions based on its prior experiences.
In the following sections, we discuss our automaton-guided
curriculum generation approach.

3Details on function P in Appendix Section A.
https://github.com/tufts-ai-robotics-group/Automaton-guided-CL

3.6 Problem Formulation
CL aims to generate a curriculum, such that the agent’s
convergence or its time-to-threshold performance on the fi-
nal target task (Mtarget) improves relative to learning from
scratch. Time-to-threshold (∆) metric computes how much
faster an agent can learn a policy that achieves expected re-
turn G ≥ δ on the target task if it learns through a curricu-
lum, as opposed to learning from another approach (Foglino,
Christakou, and Leonetti 2019). Here δ is desired perfor-
mance threshold, in success rate or episodic reward. An opti-
mal curriculum would converge to the expected return value
in the target task the quickest. Formally:

T ∗ := argmin
T∈T

[a
Mtarget

δ +
∑
Mi∈T

aMi ]

where T is the set of all curricula, aMtarget

δ is the number of
actions the agent took in the target task Mtarget to achieve
threshold performance δ, and aMi is the number of actions
the agent took in the source task Mi of the curriculum.

Our objective is to find a curriculum T = {V, E , g,M}
that improves an agent’s time-to-threshold performance on
the target task, given the LTLf representation and the
OOMDP and MDP description of the target task.

4 Methodology
The high-level curriculum generation algorithm is given in
Algorithm 1. To begin, we assume the following:
1. We have access to a high-level target task (Mtar) objec-

tive which is expressed using LTLf formulas, and can be
equivalently represented using a DFA U .

2. We have access to the OOMDP description of the target
task. The OOMDP description contains the set of classes
C of the environment, and for each class, the set of pa-
rameters for that class, along with the range of accept-
able values for the parameters. Varying these parameters
give us different tasks of the curriculum. We also have
the initial and goal OOMDP states of the final task of the
environment.

3. We have access to the functions P that given a node in
the DFA, return the set of MDPs that can reach the node,
and access to function w that performs mapping between
MDP states and OOMDP states.

Given the DFA, we first generate a key-value pair dictio-
nary K, where each key is a node of the automaton, and
the value is the set of MDPs that can reach the node, with
each MDP augmented with the initial and final OOMDP
state configuration of the MDP, resulting in the MDP-
OOMDP tuple (M, s0,oo, sf,oo), lines 1-2. The function
Get Trace Paths returns the set of all paths (Z) that
start from the initial node ω0 and reach an accepting node
ωf ∈ F . We consider only acyclic DFAs, ignoring paths
that contain a cycle. A curriculum designed with this consid-
eration will prune curriculum candidates that intend to learn
the same task repeatedly, ensuring progress in the curricu-
lum. Then, for each path ζ ∈ Z, the List Candidates
function generates an ordered-list of sequence-based cur-
riculum candidates by choosing a MDP-OOMDP tuple from



each node of the path, and sequencing it according to the se-
quence of nodes in the path ζ. We repeat this until we attain
a set of all possible combinations of MDP-OOMDP tuple
sequences (lines 4-7). This yields an exhaustive set Ψ where
each element in the set is an ordered list of MDP-OOMDP
tuples, and the length of the list is equal to the number of
transitions in the trace path. Thus, each list corresponds to
a curriculum candidate T where the vertices of the graph
are the MDPs in the list, and the edges are defined by the
sequence of the MDPs in the list. Once we have a set of
sequence-based curricula candidates, we choose an effec-
tive curriculum from this set. We introduce the jump score,
where we assign a score for each pair of consecutive source
tasks in the curriculum (lines 10-16).

Jump score: Inspired by the difficulty scores for super-
vised learning (Weinshall, Cohen, and Amir 2018), we as-
sign a jump score J : (Mi,Mj) → R ∈ [0, 1] for each pair
of consecutive source tasks Mi and Mj :

JMi→Mj
= 1/2 ∗ (simt(Mj ,Mtar)− simt(Mi,Mtar)

+ simg(Mj ,Mtar)− simg(Mi,Mtar)) (1)

where, simt(Mi,Mtar) is the task configuration similarity
between the task Mi and the final target task Mtar

4, while
simg(Mi,Mtar) is the goal state similarity. The jump score
JMi→Mj calculates how dissimilar two consecutive source
tasks in the curriculum are by calculating the difference of
the similarity of the task and goal configurations of each of
the two consecutive tasks with the final target task.

Since we have the OOMDP initial state configuration
s0,oo of each pair of consecutive source tasks of the cur-
riculum (Mi,Mj) and the final target task Mtar, the task
configuration similarity between a task and the final target
task is measured as the parameter value overlap between the
initial OOMDP state values of the two tasks.

simt(Mi,Mtar) =
1∑

o∈OMtar
|o.p0|

∑
o∈OMtar

∑
o.p∈o

o.p0Mi

o.p0Mtar

(2)
where o.p0Mi

is the value of the parameter of the object o
in the OOMDP state s0,oo of task Mi. Likewise, we also
have the OOMDP goal state sf,oo of each pair of consecu-
tive source tasks and the final target task. We calculate the
OOMDP goal state similarity of a task with respect to the
final target task using:

simg(Mi,Mtar) =
1∑

o∈OMtar
|o.pf |

∑
o∈OMtar

∑
o.p∈o

o.pfMi

o.pfMtar

(3)
where o.pfMi

is the value of the parameter of the object o in
the OOMDP state sf,oo of task Mi.

A lower jump score corresponds to a pair of tasks that
have similar initial OOMDP task configurations as well as
similar OOMDP goal state configurations. Along any path
ζ, the sum of the jump scores among all consecutive task
pairs will always be equal to 1. The set of OOMDP states
the agent visits in an episode can be potentially large, and

4More on MDP similarity: (Visús, Garcı́a, and Fernández 2021)

do not yield much information that might help in choos-
ing a suitable curriculum candidiate. Additionally, access to
the set of OOMDP states that the agent might visit in an
episode before the agent even attempts the episode requires
knowledge of the transition dynamics, which is unavailable.
Hence, only the initial and final states are used while calcu-
lating the jump score.

Next, we calculate the average jump score of each cur-
riculum candidate ψ ∈ Ψ and store it in a Curriculum - Jump
Score dictionary J (line 16). For sequence-based curricula,
the curriculum is determined by the candidate that yields the
lowest average jump score (lines 17-18).

T = argmin
ψ∈Ψ

J (Jψ) (4)

Intuitively, the curriculum T is an ordered list of MDP-
OOMDP tuples that have the lowest cumulative average
jump among any two consecutive source tasks, i.e. the cur-
riculum has the lowest task and goal state dissimilarity be-
tween any two consecutive tasks. A lower dissimilarity will
result in a stronger knowledge transfer.

The graph-based curriculum is determined by the set of
elements in Ψ that yield the cumulative average jump score
lower than a predetermined threshold value η (lines 19-21).

T ′ = {ψ ∈ Ψ ∋ J (Jψ) ≤ η} (5)

Thus, T ′ is a set where each element is an ordered list of
MDPs (each element is a sequence-based curriculum). A
graph is generated by considering equivalent MDPs in T ′

as common nodes, and the edges are given by the sequence
of MDPs in each element in T ′ (line 22). The weights on the
edges denote the proportion of knowledge contribution of a
source task and is discussed further below. The worst case
time-complexity of the algorithm is O(|V|3|E||C|2|p|2) and
where |V| and |E| are the number of vertices and edges in
the DFA’s DAG and |C| and |p| are the number of classes
and maximum number of class parameters in the OOMDP.

Knowledge Transfer in curriculum learning involves
leveraging learned knowledge from a source task and trans-
ferring relevant knowledge to the next task in the curricu-
lum. In our curriculum setting, each individual source task
is learned using DQN (Mnih et al. 2015), and hence we per-
form value function transfer, where the weights of the neural
network of the learned value function of a source task are
initialized as the weights of the value function of the next
task, i.e. V iMj

← V ∗
Mi

. Thus, instead of commencing the next
task Mj with random V (s) values, the learned value func-
tion of the source task biases action selection in the next task
according to the experience already collected in the source
task. In scenarios where the action spaces are continuous,
the RL algorithm needs to be adapted to suit the needs of the
domain. DDPG (Lillicrap et al. 2016) and PPO (Schulman
et al. 2017) allow continuous action spaces and can replace
the DQN as the base RL algorithm. In case of a sequence-
based curriculum, where we transfer knowledge from only
one source taskMi to the next taskMj in the curriculum, the
value function of Mj is initialized to be the learned value
function of Mi. This process is continued until we reach
the end of curriculum, culminating in the final target task



Algorithm 1: AGCG(U ,Mtar, w, P, η, CL-Type)
Output: Curriculum: T
Placeholder Initialization: Set of all acyclic trace paths Z←∅
Node-MDP Dictionary K ← ∅
Curriculum - Jump Score dictionary J ← ∅
Set of curriculum candidates Ψ← ∅
Algorithm:
1: for ω ∈ Ω do
2: K ← K ∪ {ω : (P (ω), w(P (ω)(S0)), w(P (ω)(Sf ))}
3: end for
4: Z ← Get Trace Paths(U)
5: for ζ ∈ Z do
6: for ωi ∈ Occ(ζ) do
7: Ψ← Ψ ∪ {[List Candidates(K(ωi))]}
8: end for
9: end for

10: for ψ ∈ Ψ do
11: jump sum← 0
12: for i = 1 to |ψ| − 1 do
13: jump sum← jump sum+ JMi→Mi+1

14: end for
15: Jψ ← jump sum/|ψ|
16: J ← J ∪ {ψ : Jψ}
17: end for
18: if CL-Type == Sequence-based then
19: T = argminψ∈J J (Jψ)
20: else if CL-Type == Graph-Based then
21: T ′ = {ψ ∈ Ψ ∋ J (Jψ) ≤ η}
22: T ←Graph(T ′)
23: end if
24: return T

Mtar. In case of a graph-based curriculum, where we trans-
fer knowledge from multiple source tasks (Mi,Mi+1, . . .) to
the next task in the curriculum (Mj), the value function of
the next task (Mj) is initialized to be a weighted sum of the
value functions of its source tasks, i.e.

V ij = β0 · V ∗
i + β1 · V ∗

i+1 + . . .+ βl · V ∗
i+l (6)

where V ij is the initial value function of the target task Mj ,
V ∗
i is the learned value function of the source task Mi, l

is the number of source tasks, and β is a scalar weighting
factor. To calculate β, we use the following:

βi ∝
1

JMi→Mj

and
k=l∑
k=0

βi+k = 1 (7)

i.e., the lower the jump score between tasks Mi and Mj , the
higher the similarity between their OOMDP task and goal
configurations, thus, higher the weightage of the learned
value function of the task Mi, and vice versa. A higher sim-
ilarity will correspond to a stronger positive transfer. In case
of a graph-based curriculum, we learn the tasks that corre-
spond to the leaf nodes initially, transferring knowledge us-
ing Equations 6 and 7, culminating in the final target task5.

5Link to source code and appendix:
https://github.com/tufts-ai-robotics-group/Automaton-guided-CL

5 Experimental Results
We aim to answer the following questions: (1) Does AGCL
yield sample efficient learning? (2) How does it perform in
environments that have distractor objects that are not mod-
eled in the LTLf specification? (3) How does it perform
when the exact OOMDP description is unknown? (4) Does it
yield sample efficient learning when the OOMDP parameter
space is continuous? (5) How does it perform when generat-
ing all potential curricula candidates is intractable?

5.1 AGCL - Gridworld Results
To answer our first question, we evaluated AGCL on a grid-
world domain with the LTLf objective:

G((t→ ¬r ∧ ¬p) ∧ (r → ¬t ∧ ¬p) ∧ (p→ ¬r ∧ ¬t))
∧ (¬pU(t ∧ X(¬pUt))) ∧ (¬pUr) ∧ Fp (8)

where t, r, p correspond to the atomic propositions
tree, rock and pogo-stick respectively. Essentially, the
agent needs to collect 2 trees and 1 rock (by navigating
to the objects and breaking them) before approach-
ing the crafting table to craft a pogo-stick. This is a
complex sequential decision making task and requires
∼ 108 interactions to reach convergence (Shukla et al.
2022). The OOMDP description is given by: C =
{world size, trees, rocks, crafting table}, where the
class parameters are: C(world size) = {width, height};
C(x) = {xenv, xinv|x ∈ {trees, rocks}} and
C(crafting table) = {crafting tableenv}. The pa-
rameters width and height can assume values in the range
[6, 12] and the number of trees, rocks and crafting table
in the environment can assume a value in the ranges of
[0, 4], [0, 2] and [0, 1] respectively. In this environment, the
agent can move 1 cell forward if the cell ahead is clear
or rotate π/2 left or right. In the target task, the agent
receives a reward of 103 upon crafting a pogo-stick, and
−1 reward for all other steps. The agent’s sensor emits a
beam at incremental angles of π/4 to determine the closest
object in the angle of the beam (i.e., the agent receives
a local-view of its environment). Two additional sensors
provide information on the amount of trees and rocks in the
agent’s inventory (More details in Appendix B).

The learning curves in Fig. 3 depict the perfor-
mance of our proposed sequence and graph-based AGCL
method against five baseline approaches namely learning
from scratch, automaton-guided reward shaping baslines:
GSRS (Camacho et al. 2018), QRM (Icarte et al. 2018),
and curriculum learning baselines: Teacher-Student (Mati-
isen et al. 2020) and self-play (Sukhbaatar et al. 2018), all
implemented using the same RL algorithm DQN (Mnih et al.
2015). The automaton-guided reward shaping baselines do
not employ a curriculum and build upon naive reward shap-
ing by modifying the reward inversely proportional to the
distance from the DFA goal state and by learning policies
for each DFA state transition. The curriculum learning base-
line approaches do not utilize a reward machine, and rely on
optimizing the task sequence through agent’s experience6,.

6Baseline implementation details in Appendix Section C
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(c) Imperfect OOMDP
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Figure 3: Learning curves (Averaged over 10 trials): (a) Gridworld domain; (b) Gridworld - with distractor objects in the
environment; (c) Gridworld - with imperfect OOMDP description of the environment; (d) Gridworld - with subset of curriculum
candidates. Figs.(e) and (g) show the two robotic environments and their learning curves in (f) and (h)

The learning curve for the curriculum approaches have an
offset on the x-axis to account for the interactions used to go
through the curriculum before moving on to the target task,
signifying strong transfer (Taylor and Stone 2009). The re-
sults in Fig. 3a show that AGCL reaches a successful policy
quicker, and the graph-based curriculum proposed by AGCL
outperforms the sequence-based approach. Learning source
tasks in a graph-based curriculum is also parallelized, re-
ducing the overall wall time. Furthermore, our method out-
performs the five baseline approaches in terms of learning
speed. The other four baseline approaches perform better
than learning from scratch, but do not outperform AGCL.
All approaches may converge to a higher asymptote, but will
need more interactions with the environment. For this task,
the curriculum generated by AGCL has |V| = 4 and |V| = 6
for the sequence-based and graph-based curricula respec-
tively. To demonstrate that the average convergence rate of
AGCL is consistently higher than the baseline approaches,
we perform an unpaired t-test (Kim 2015) to compare AGCL
against the best performing baselines at the end of 107 train-
ing interactions and we observed statistically significant re-
sults (95% confidence). Thus, AGCL not only achieves a bet-
ter success rate, but also converges faster.7

5.2 AGCL on Tasks with Distractor Objects
Next, we test our AGCL approach (sequence and graph)
on the pogo-stick task described in Sec. 5.1 but now the
OOMDP description of the environment contains a new
class C(distractor) = {distractorenv, distractorinv},

7Statistical significance result details in Appendix Section D.

whose object distractorenv or distractorinv can assume
values in the range [0, 2], signifying that the initial task
state or the inventory may contain 0 to 2 instances of the
distractor object. The agent interacts with this object the
same way it interacts with trees and rocks, i.e. by navi-
gating to the object and collecting it in inventory. However,
presence of distractor objects in the inventory of the agent
is not necessary to achieve the target objectives and is not
modeled in the LTLf specification.

Fig. 3b demonstrates how our proposed AGCL performs
against the baseline approaches. Since our curriculum gen-
eration approach models not only the goal configuration but
also the initial task space configuration, it is successful in es-
timating the difficulty posed by the introduction of the dis-
tractor object as they are present in the initial state of the
target task. The curriculum generated by AGCL guides the
agent to a successful policy in fewer interactions compared
to the other baselines. Approaches that design a curriculum
purely from the LTLf specification will not model the dis-
tractor objects, and will thus fail to determine the complexity
of a source task that contains these distractor objects.

5.3 Tasks with Imperfect OOMDP Descriptions
In certain partially observable settings, it might not be pos-
sible to obtain an accurate OOMDP description of the en-
vironment. To demonstrate the efficacy of our approach in
imperfect OOMDP descriptions, we incorporate a gaussian
noise over the class parameter value ranges, i.e. if the param-
eter range is Pargiven(world size[height]) = [a, b], we as-
sume that this range is imperfect, and the true range is given



by Parnoisy(world size[height]) = [a − N (0, σ), b +
N (0, σ)], where σ = (b−a)/6; covering the entire range of
the parameter values in six standard deviations. We incorpo-
rate a gaussian noise over all the class parameters ranges.

We test AGCL (sequence and graph) on the same task of
Sec. 5.1 but now the environment’s OOMDP description is
noisy over the parameter values, i.e., the exact OOMDP de-
scription is unknown. We observe that even with imperfect
OOMDP descriptions, AGCL converges faster than the base-
lines (Fig 3c), and the graph-based AGCL converges to a
successful policy the quickest, in 2.5× 106 interactions.

5.4 Tasks with Continuous OOMDP Ranges
In the gridworld, the OOMDP parameter values were inte-
gers. In this experiment, we test how our approach performs
in tasks that have continuous parameter ranges. We modify
the function P : Ω→M that given a node in the DFA, sam-
ples a subset of MDPsMsub ⊆ M such that |Msub| = b.
We test this on two challenging simulated robotic environ-
ments where the interaction cost is high.

Fig. 3e shows a robotic task with the same objective
described in Sec. 5.1. Here the values for the parame-
ters width, height for class world size are in the contin-
uous range [2m, 4m]. The move forward (backward) action
causes the robot to move forward (backward) by 0.1m and
the robot rotates by π/8 radians with each rotate action. Ad-
ditionally, the objects can be placed at continuous locations
in this robotic domain as compared to discrete grid locations
for the gridworld task. These changes increase the number
of MDP and OOMDP states the agent can attain.

The second simulated robotics environment (Fig. 3g)
consists of a robotic arm performing a pick-and-place
task (Gallouédec et al. 2021) with the LTLf objec-
tive: F(g∧F(p∧Fq)) where g, p, q are the atomic proposi-
tions for ’reach-object’, ‘pick-up-object’ and ‘place-object’.
The OOMDP is modeled as C = {world size, objects}
with Par(world size) = {length, width, height} and
Par(objects) = {no objects}. The continuous pa-
rameters {length, width, height} assume values between
[10, 50]cm. The robot has continuous action parame-
ters for moving the arm and a binary gripper action
(close/open). The robotic domains were modeled using Py-
Bullet (Coumans and Bai 2016–2021). For each node, we
sample b = 25 different MDPs and evaluate AGCL. The re-
sults in Figs.(3f,3h), show that AGCL outperforms all other
baselines in both environments. Additionally, the graph-
based AGCL converges to a successful policy the quickest.

5.5 AGCL on Subset of Curriculum Candidates
In cases where the range of parameter values or the DFA rep-
resentation is too large, the number of curriculum candidates
can grow exponentially in terms of the number of nodes in
the DFA, making it infeasible to calculate the jump-score for
each curriculum candidate. For this, we evaluate AGCL on
the task described in Sec. 5.1 by sampling a subset Ψsub of
the total curriculum candidates Ψ, such that |Ψsub| = |Ψ|/4,
thus reducing the total number of curriculum candidates and
the amount of computation required to determine a suitable
curriculum. From the results in Fig. 3d, we observe that in

this experiment, AGCL takes more interactions to converge
to a desired policy as compared to Fig. 3a, as sampling a sub-
set prunes some desirable curriculum candidates, however it
outperforms the other curriculum learning and automaton-
guided RL baselines in terms of learning speed.

6 Conclusion and Future Work
We proposed AGCL, a framework for curriculum generation
using the high-level LTLf specification and the OOMDP
description of the environment. AGCL decomposes the tar-
get objective into sub-goals, and generates a sequence-based
or a graph-based curriculum for the task. Through exper-
iments, we demonstrated that AGCL accelerates learning,
converging to a desired success rate quicker as compared to
other curriculum learning and automaton-guided RL base-
lines. Moreover, our proposed approach improves learning
performance even in the presence of distractor objects in the
environment that are not modeled in the LTLf specification.
Finally, we evaluate our approach on long-horizon complex
robotic tasks where the state space is large. AGCL reduces
training time without relying on human-guided dense reward
function nor does it require a perfect OOMDP description
of the environment. The graph-based curricula produced by
AGCL affords learning separate behaviors in parallel, reduc-
ing wall clock time for complex sequential decision making
tasks. Thus, our proposed AGCL approach offers accelerated
learning when the high-level task objective is available.

We assume that the high-level task objective is available,
and can be characterized using a LTLf formula. However, in
certain cases, the target tasks can be completely novel, with
no prior information on the task objective. Additionally, it
might not be feasible to represent the domain using OOMDP
representation, as the objects in the environment can be un-
known, and the only way to get more information about the
environment is through interaction with the environment.
In scenarios where the LTLf specification becomes com-
plex, the DFA gets larger, and it might become intractable
to come up with exact solutions of curriculum optimization.
Future work would involve devising approximate solutions
that tightly bound exact solutions. Also, our heuristic, the
jump score, while it was shown to be useful here, might not
perform universally well for all task objectives and environ-
ments. In future work, we plan to modify this heuristic to be
more theoretically-grounded. Furthermore, we plan to ex-
tend it to settings where obtaining an accurate LTLf speci-
fication might be difficult. Finally, we would like to extend
our work to multi-agent settings, and investigate curriculum
generation using even more expressive high-level languages,
such as CTL∗ and µ-calculus.

Ethical Impact
AGCL aims to boost the learning speed of reinforcement
learning agents for sequential decision making tasks. This
will enable quicker learning for robotic applications. It will
lead to an overall reduction in the training times, saving
computation time and energy. On the other hand, this work
can also be used for negative applications - e.g., malicious



use of RL. However, the above mentioned concerns are cen-
tral to all works that deal with any aspects of AI.

Acknowledgements
A portion of this work was conducted in the Multimodal
Learning, Interaction, and Perception Lab at Tufts Univer-
sity, Assured Information Security, Inc., Georgia Tech Re-
search Institute, and the University of Colorado Boulder,
with support from the Air Force Research Lab under con-
tract FA8750-22-C-0501.

References
Camacho, A.; Chen, O.; Sanner, S.; and McIlraith, S. A.
2018. Non-Markovian rewards expressed in LTL: Guiding
search via reward shaping (extended version). In GoalsRL,
a workshop collocated with ICML/IJCAI/AAMAS.
Coumans, E.; and Bai, Y. 2016–2021. PyBullet, a Python
module for physics simulation for games, robotics and ma-
chine learning. http://pybullet.org.
Da Silva, F. L.; and Costa, A. H. R. 2019. A survey on trans-
fer learning for multiagent reinforcement learning systems.
Journal of Artificial Intelligence Research, 64: 645–703.
De Giacomo, G.; and Vardi, M. Y. 2013. Linear temporal
logic and linear dynamic logic on finite traces. In IJCAI’13
Proc. of the Twenty-Third Intl. joint Conf. on Artificial Intel-
ligence, 854–860. Association for Computing Machinery.
Diuk, C.; Cohen, A.; and Littman, M. L. 2008. An object-
oriented representation for efficient reinforcement learning.
In 25th Intl. Conf. on Machine learning, 240–247.
Foglino, F.; Christakou, C. C.; and Leonetti, M. 2019. An
optimization framework for task sequencing in curriculum
learning. In Intl Conf. on Development and Learning.
Gallouédec, Q.; Cazin, N.; Dellandréa, E.; and Chen, L.
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